수학을 감으로 푸는게 말이 됨?
게시글 주소: https://orbi.kr/00072381452
됨 ㅇㅇ 안 될 이유가 없음
단, 여러분이 떠올리는 '감'과 제가 말하는 '감'에는 차이가 있을 수 있습니다
문제 하나 예시로 들어서 설명하자면
문제를 보자마자 처음 드는 생각은
'가운데에 거지같이 생긴 식 하나', '아래쪽에 못생긴 그래프 하나', 'g가 불연속?' 정도가 될 수 있을텐데, 해답을 내기 위해서 문제를 좀 더 뜯어 먹어보면
g는 f(2^x)의 우미분 계수에 절댓값을 씌운 것이 눈에 들어올 것이고, '우미분계수가 불연속? -> 첨점? -> 하단의 그래프에서 x=자연수일 때마다 첨점 존재!'라는 사실이 점점 와닿을 것입니다.
이 상태에서 '아 감 잡았다.'라고 판단하고 (1/32, 32)에서의 자연수의 개수인 31을 n으로 적고 치우면 서두에 적은 전자의 '감'만으로 문제를 푼 꼴이 되는 것과 다름이 없습니다.
여기서 후자의 '감'이 한번 발동한다면 '근데 단순 첨점으로 판단하게 할거면 절댓값은 왜 씌워둔거지?', '왜 하필 우미분계수만 준거지?'라는 의문이 들 수 있습니다. 여러 문제를 풀고, 틀리고, 절어본 경험에 의해 수학적 나락 회피 센서가 작동하는 겁니다.
이를 통해 문제를 한번 더 돌아보면 문제식은 어차피 우미분 계수니까 분모는 절댓값의 영향을 받지 않으므로 분자에 있는 절댓값 내부의 식의 대소에만 영향을 받으니까
로 두고 보면 'x=m(m은 자연수)일 때 충분히 작은 양수 h에 대하여 f'(m+h)>0이면 (m, m+1)에서는 f를 뒤집어서 판단해야겠구나'를 알게 되어 n=3k는 a가 될 수 없음을 판단하고 n=21을 적는 것이 수학적 '감'으로 문제를 잘 해결한 사례라고 할 수 있습니다.
사례를 하나 더 들자면
사실 이 문제는 전자의 '감'으로 풀기는 힘들었을겁니다. 감이 안 올거거든요. 자연수가 한둘도 아니고 1부터 감으로 하나하나 찍어넣는건 현실적으로 불가능하니.
그럼 여러 경험을 한 뒤에는 어떤 감을 받게 되느냐
'천장이 있구나'
'천장은 12일 것이다'
'k의 후보군은 12의 약수일 것이다'
라는 감이 바로 왔습니다. '문제에서 구체적인 자연수 k의 개수를 줬으니 k가 무한히 존재할 리 없으며, f(x)=a가 되는 x의 개수가 더 적어야하면 일반적인 삼각함수의 2개 주기 분량인 [-2pi, 2pi]에서 g보다 f가 더 많이 반복된다면 a가 되는 x의 값이 더 많아지므로 조건을 만족하는게 불가능할 것이다.'라는 결론에 도달할 수 있기 때문입니다.
또한 문제의 조건상 f(x)=a인 x는 모두 g(x)=a여야 하는데, 주기의 싱크로가 서로 안 맞게 되면 이를 만족하지 못 할 것이 자명하므로 12의 약수 중에서 따져봐야 함이 합리적이기 때문입니다.
이처럼 수학 문제에서 '감'은 문제 풀이에 있어 매우 중요합니다. 특히나 수학 문제를 제한된 시간 내에 풀어야 하는 형태인 시험에서는 그 중요성이 더욱 올라감은 말 할 필요가 없습니다.
다만 이 수학적 '감'을 혼동하지 않으셨으면 합니다. 물론 두 형태의 '감' 모두 그 근원은 이전에 풀어본 문제에 있습니다. 둘 다 '내가 전에 A라는 문제를 보니까 이렇게 풀더라'를 근거로 문제에 대한 접근을 시작하게 되는데 문제의 유형을 수박 겉핥기 식으로 정리해서 풀어왔다면 감으로 풀었을 때 언젠간 크게 사고가 터질 것입니다. 문제의 형태는 A'인데 발문에 깔린 의도는 B인 문제는 얼마든지 만들 수 있으니까요.
하지만 거시적인 차원에서 문제를 바라봤다면 당신의 감은 문제를 푸는 내비게이터 역할을 충실히 수행해 줄 것입니다.
이런 이상한 문제에서도 말이죠
일본에서 나름 유명하다면 유명하다고 할 수 있는 죠치대의 2010년도 기출입니다.
일본어를 잘 모르더라도 A, B, C의 대소관계를 파악하라는 건 알 수 있으실 겁니다.
B와 C 사이의 대소관계는 지수법칙 이용해서
라는 사실을 바로 파악할 수 있지만 A는 도대체 어떻게 처리해야 할지 고민이 되실겁니다.
이때 C가 50^100. 즉 50이 100번 곱해졌고, A가 100!. 즉 1부터 100까지 100개의 수가 곱해졌다는 사실을 포착하고, 또 1부터 100까지의 수에 대하여 그 중간이 50이라는 것이 눈에 보인다면
로 파악할 수 있고, 이는
로 정리해서 일반적으로
의 곱이 n=1부터 50까지 반복된 것이라고 나타낸다면 이것이 50^2보다 커지는 경우가 생각보다 많지 않다는 걸 포착하고 A가 C보다 작지 않을까? 라는 감을 잡고 풀이를 전개해 나갈 수 있습니다.
일본 유튜브를 참고하면 저보다 더 깔끔하게 나오는 풀이도 있지만 제가 푼 방법을 여기서 간단히 소개해드리자면
이처럼 문제를 처음 마주쳤을 때 받게 되는 감은 문제 해결에 있어 매우 중요한 단서가 될 수 있습니다.
다만 당신이 받은 '감'이 진짜로 도움이 되는 것인지. 아니면 장애물로 작용할 것인지는 본인이 지금까지 문제를 풀어오면서 얼마나 생각을 해봤느냐에 따라서 달라질 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
백악관, 尹 파면에 "한국 민주적 제도·헌재 결정 존중"(종합2보) 3
[워싱턴=뉴시스] 이윤희 특파원 = 도널드 트럼프 미국 행정부가 4일(현지 시간)...
-
제가 영어가 진짜 쌩노베인데 영단어장을 뜯어먹는 중학단어1800? 이거 외우고...
-
어쩌라고 ㅗ
-
저는 막연히 한계를 경험해보고 싶다는 마음으로 공부를 하고 있는데요, 문득 구체적인...
-
얼버기 2
부지런행
-
어제 에지간히 피곤했는갑네
-
ㅎㅎ 잠 깼다 1
기분 좋아졌어 아 나 진짜 대가리 꽃밭인듯
-
인권 보장 부탁.
-
계속 개소리 짓거리며 내말이 맞다고 우기는데 자고일어나면 그게 왜틀렸는지 알게됨..
-
작년 재작년에 더프쳤는데 거의 겹치려나요 풀지말지 고민인데
-
수학 N제 추천 1
죽기전에 이건 풀어봐라 하는거 있나요? 지인선 다하면 드릴할지 이해원할지 고민인데
-
으으 드러워서 내가 빡일한다 당분간 일하다가 많이 속상해할예정
-
발상노트 쓰는 데 시간이 너무 오래 걸려요 문제 이해하지 말고 그냥 풀이랑 예시만...
-
새르비 뭐임 6
-
하..
-
재종다녀보신분들 1
재종다녀보신분들 시대랑 강대 중에 어디가 좋을까요 추천부탁드립니당
-
여기에 수업까지 끼면 힘들어서 우울증 올 것 같은데
-
(꾸준글 1일차)
-
검고보러간다 4
드가자잇
-
지각이다.. 1
(진짜 지각임)
-
트럼프 시발아
-
그러하다
-
살기싫어요 5
아 과외 아치에 잡지말걸
-
세상에 없는거 같아요 으아아ㅏㅏㅏㄱ 그래도 올해 성불해야되니까 갔다올게요
-
얼버기 3
피곤해
-
왜 비오냐 2
우산없는데
-
계속 숏치라는 하늘의 계시인듯 양봉마다 숏 때릴예정
-
내신 수업이지 ㅋㅋㅋㅋ
-
잘생겼는지 어떻게 확인하냐
-
졸려서 그냥 자버렸는데 뭐 난리가 있었나요..
-
농어촌 1
이번에 만약 의대 감축된다면 농어촌한테도 영향이 큰가요? 의대증원일때도...
-
ㅇㅂㄱ 1
머리 깨질거 같아요
-
블랙먼데이냐 시발?
-
얼버기 0
ㅇ
-
얼부기 2
방가워요
-
3년전에 활동하던 곳인데 그때나 지금이나 내 사상은 거기서 거기인듯 중딩때부터...
-
힘들어죽겠다...
-
새르비 개쩌네 1
저걸못봄..
-
시민1:헌재 불질러버려 #~# 시민2:이게 말이 되냐고오오오!!!! 전광훈:아니...
-
1. ∀x (E(x)) (모든 것이 존재한다) 1의 부정은 2. ∃x (¬E(x))...
-
션티하고 이영수 중에서 누가 괜찮을까요? 이명학은 제 수준에서 보기엔 힘들것 같아서 제외합니다.
-
질문 받음
-
말그대로 입니다 반수 하려는데 선택과목을 무엇을 하면 좋을까요? 공대 지망이고...
-
바보고 손해보고 안그러고 살려그래도 잘 안되고 응응ㅇ.. 또 나만바보고..
-
아침에 올리겠음
-
어쩌다 잠못잠 2
아니 근데 왜 벌써 D-222냐...
-
. 10
일단 난 아님
감도 꽤 센스있게 써먹어야 되네요
보통 그정도 센스가 올라오면 자연히 감이 오죠
진짜 잘읽었습니다
감사합니다
저 문제는 (-inf, 5)여도 답이 똑같은데 외관상 난이도 낮추려고 저런거같음
안정적인 대?칭의 형태
사실 수능 수학뿐아니라 수학자체가 일단 이럴거같은데? 하는 감과 엄밀한 증명의 조합이긴하죠
사실 감이라는게 발견적 추론에 의해 가설 설정하기인데 너무 배척받는 것 같긴 합니다.
'수학적 나락방지센서' 좋은 표현이네요 ㅋㅋㅋㅋ