수1 특강 -(1, 수열의 귀납적 정의)
게시글 주소: https://orbi.kr/00072257873
1. 이론
문제 풀이의 도입이 안 된다면 실험과 관찰(나열)을 통해 문제의 규칙을 찾아봅시다.
또한 수열의 진행방식이 결정된 상태라면, 역으로도 진행할 수 있음을 기억합시다.
그리고 많은 수열 문제에서 케이스를 정확히 잘 분류함이 중요합니다.
바로 예제로 넘어갈게요
2. 예제
수능수학에선 이미 결정된게 뭔지를 빠르게 찾아내는 능력이 꽤나 중요합니다.
a_n이라는 수열을 보면, 수열이 귀납적으로 3개의 연속한 항의 관계가 결정되었고,
2개의 항 또한 결정되었으니 a_n이라는 수열은 결정되있음을 알 수 있습니다.(즉, 전체를 알고 있음)
a_n이 어떤 수열인지 알기위해 조금 나열을 해보죠.
1,1,0,-1,1,0,-1,1,0,-1,..<- 수열의 규칙을 금방 발견할 수 있네요. (3 주기)
아는걸 정리해보자면, b_20, a_n이라는 수열 그리고, a_n과 b_n을 알고 있습니다. (b_n이 결정되었다.)
마무리는 다음과 같은 교대급수 식을 계산해주면 됩니다.
이 때, a_n은 3주기의 수열, (-1)^n은 2주기의 수열이므로 그 곱이 6주기(최소공배수)의 수열이 됨을 알 수 있습니다.
따라서 특이항인 a_1을 배재해준 뒤로, 6개씩 묶어서 계산해주면 되겠네요.
b_20을 제시함으로써, a_n을 (19-1)=18개로 6개씩 묶게 좋게 줬음을 알 수 있네요.
a_n이 결정되지 않았음을 알 수 있네요. (최소 2개의 항이 결정되야함)
아는 항이 a_7이니 여기서부터 조금 진행을 해봅시다
40, 40+a_6, 80+a_6 or (40+a_6)/3. (a_6에 따라서, 진행 방법이 바뀜을 알 수 있다.)
즉, a_6를 3으로 나눈 나머지에 따라서, 수열을 관찰해주면 되겠습니다. (적절한 케이스 분류)
(a_6를 3으로 나눈 나머지가 0,1,2인 경우)
Omitted.
3. Exercise
직접 연습해봅시다. (아마도 난이도 순서입니다.(1번이 쉬움))
1번 문제
2번 문제
3번 문제 (참고, https://orbi.kr/00071614605)
4번 문제 (참고, https://orbi.kr/00071592948)
5번 문제 (어렵습니다, 재미로 풀어보세요.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나 죽 0
살
-
연대의 뿌리인 광혜원도 한국 최초 서양식 병원이고, RC제도도 한국 최초고, 지금...
-
잇올은 이틀후에 신청받는다더니 글 내려가있고 전에 신청 마감일까지 자리 남아있던...
-
지금 사람있나? 3
물어볼거 있는데
-
술마시고 2
이제 일어남 ㅎ
-
기상 0
안녕하세요
-
영어는 단어가 제일 중요합니까..? 우선 단어만 지지게 달달 외우는게 답..?
-
거기서 오랜만에 "희재" 그리고 "거리에서"를 부르고 왔습니다. 떠오르는 그때...
-
디지ㅣㄱㅅ 0
살려
-
'반드시 참'임이 보장되지 않는 명제를 고르시면 됩니다.
-
보어의 원자 모형과 슈뢰딩거의 양자 역학적 원자 모형 - 수특 독서 적용편 과학·기술 02 0
안녕하세요, 디시 수갤·빡갤 등지에서 활동하는 무명의 국어 강사입니다. 오늘은...
-
입시 커뮤니티는 되도록 안 하는게 약인 것 같음 (오르비 아님) 0
밤에 잠 못자고 쓰는 뻘글이며 삭제할지도 모름. 현역 때까지는 입시 커뮤니티 같은...
-
얼버기 0
오늘은 쉬는날~~
-
침대 난간 너머로 빼꼼 쳐다보다가 어깨 툭툭 두들겨서 깨우더라고요 시력 꽤 나쁜...
-
큰일났네 3
이거 8시에 일어나서 저녁까지 못버티면 수면패턴 망해버렷
-
거기에 추가로 오천원치 타코야끼사먹고 걍 잤다가 속 다버렷ㄴ네 지금 속이 아프다 하이볼 먹지말걸
-
다시 건실하게 공부할게요
-
본인 대학교 1학년 재학중임. 수시 다 떨어지고 하향으로 5지망왔는데 그래도...
-
그만깝칠게요 14
못해못해 ㅅㅂ 하지마세요이거
-
아 자살할까 1
그냥 죽을까
-
잔다리 1
좋은 밤 돼
-
워낙 국어 노베이기도하고 , 암기식 머리라 글을 너무 늦게 읽어서 시험볼때 진짜...
-
얼버기 7
-
오기를 바래요
-
흠; 좆됏네
-
잠깐 잠자다가 방금 일어났는데 나 자고 있을때 친구가 디엠이랑 릴스 좀 보냈거든?...
-
생윤은 칸트를 잘 가르치고 있다 - 수험생을 위한 칸트 정리편 1
*이 글은 필자의 뇌피셜이 난무하는 글입니다. 오늘은 교육 과정에서 멀리 뛰기...
-
아무도 없군 7
이제부터 여기는
-
궁금한거잇으신분 5
이래봐도 나름 6수 160 80 8의 스펙을 가지고잇음
-
주변에 여는가게가없네
-
상어 먹고 싶다 3
.
-
피해망상이 있음 4
어짜피 다들 나 병신취급하는거 같음
-
밸런스게임하자 25
밸런스게임 시켜줘 잘 답해볼게
-
서울대 3명보낸??평반~ㅈ반고이구... 모고 17 18번도 겨우풀수준이고 시험이...
-
굿나잇 2
ㄴㅇㅂㅈ
-
돈줘 2
돈내놔
-
너무졸리네 1
흠
-
인생 업적 1
구구단 외웟음
-
-
행복하게 살자 3
살.자마려워
-
7월 <- 좋아하는 친구 만날듯 12월 <- 수능 끝나고 성형할 예정(늦으면 1월 초)
-
뻥임 안 보여줌 몇개 잇긴함
-
아이유 우울시계 이거 반복해서 들으면 눈물이 쏟아짐...
-
무물보 8
선넘질 ㄱㄴ
-
수능수학적 정보가 많은 칼럼보다 좀 경량급 칼럼이 호평받은거 나름 충격이라...
-
오목2 1
공격
-
오목 시작 0
가볼게요
오잉? 정말 유익해요
읽어보겠습니다
좋은 글 감사합니다

이런글은 선추후독이 맞긴해
감삼당 자기전 풀고 잘게ㅇ ㅛ5번은 어떤문제인가요..? 논술?
경시에요
아하
사실 예제 풀이가 별거 없어서 연습문제가 주인 ㅋㅋ..

얘는 뻘글 지르다가 이런 유익글 써내는 거 보면 ㄹㅇ 신기함내 최애 지로함이 글쓰면 무슨글이든 공부하다 후다닥
개추야
결정된것을찾기
또는
아는 것/ 모르는 것의 구분
ㅇㅈ합니닷
마지막문제 풀고있는데 풀이가 한장 넘어가네요 간결하게 풀리나요?
+뉴턴항등식 쓰는거맞나요 ㅠ.ㅠ
풀이 꽤 길긴해요,
풀이가 많을 듯한데 제가 아는 풀이에서는 안 썼던 것 같아요.
a_n -1을 b_n으로 정의해서 상수 없애주고
적절한 kb_n+1을 양변에서 빼 준 후등비수열 꼴로 만들어서 다 더하는 방식으로 했는데 너무 무식하게 풀었는지 으악이네요
뭔가 이렇기 한 다음에 b_2023이 제곱수다!라는 정보를 찾으면 제곱합조건은 맥거핀처럼 날아가지 않을까~ 하고 달린 건데
잠정적결론 자체가 틀렸나봐요
원래 풀이는 a_n=(f_2n)^2+(2f_(2n-1))^2임을 증명하는 거에요. (f는 피보나치 수열)
아마 이게 Official Solution일꺼에요.

혹시 생성함수를 쓰는건가욧제가 피보나치 관련해서 아는게 딱 이정도라 ㅠㅠ 아니면 자려구요

귀납법 쓰는거에요,식을 푸는 과정에서 (f_n)^2-3(f_n)(f_(n-2))+(f_(n-2))^2=(-1)^n이라는 유명한 항등식 하나가 필요한데, 지금보니 유도하려면 나오겠지만, 이 항등식을 모르고 풀기엔 되게 어려울 거 같네요.
그럼 두개의 항이 결정되면 a_n이 결정된걸로 알수있는건가요?