수학황분들 이 문제 어떻게 풀어요?
게시글 주소: https://orbi.kr/00072194259

아무리 생각해봐도 경우의 수가 무수히 많아서 모순이 있는거 같은데 정확히 왜 그런지 모르겠는데 이 문제 해설해주실분..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
"야당 대표 노려본 게 탄핵사유 맞나?" 재판관 질문에…국회 측 "국회 무시 정황" 1
박성재 법무부 장관에 대한 탄핵소추를 의결한 국회 측은 박 장관이 야당 대표를...
-
무등비 시발 4
개좆같다 진짜 230428 이거 왜 비율이 안 찾아져
-
집 잠깐 들러서 패딩으로 갈아입고 바로 치과 가야해요 걍 누워서 자고싶다...
-
감만 잡는용으로 조정식모고로 해봄 악필 ㅈㅅ합니다 나볼려고 대충썼는데 사진이라도...
-
뭐가 문제임?..........
-
무슨 일 안 생기나
-
작수 74점으로 3등급 나왔는데(듣기는 다 맞음) 단어장좀 추천해주세요 션티...
-
남자는 군대 갈것같고 여자는 과외 뛰나요 그럼
-
현여기입니다 작년엔 고2 수학 항상 2떴어염 지금은 수학 ㅈㄴ게까먹었고 미적분은...
-
워크북을 풀까요 기생집4점을 풀까요??? 3월 7일쯤 부터 시작하려하는데 이제 파데...
-
책 입고되면 알려달라니깐 갑자기 냅다 번호를 물어보더라구요,, 얼탱없어서 알려주긴...
-
인강 아는내용도 다 들음? 특히 지구같은거
-
3월부터 커리가 어떻게 되나요? 예전엔 듄탁해랑 그릿이였는데 그릿이 뒤로 밀린걸로...
-
체력 너무 쓰레긴데 11
원래도 알았지만 새터가서 많이느낌 내가 가장 많이잤는데 내가 가장 피곤하고 1일차엔...
-
후후후 2
28렙풀콤은 쉽다
-
내 품에 안겨와 오랫동안 그랬듯
-
삼겹살 두줄 비빔면 1개 맥주 1000cc 엑설런트 2개 5
놀랍게도 방금 30분동안 처먹은것.
-
교수님이랑 단둘이 수업 ㄷㄷ
-
오늘부터 0
오르비를 '입시커뮤니티'로만 활용한다.
-
07현여기임 문제푸는데50년정도걸림 영어지문 하르예 딱 8개만 풀고 분석하려는데...
-
어카지 6
수업하다 학생 사라짐 카톡에 1이 안사라진다
-
배달을 시켜먹으면 오르비에 치킨한마리를 쏘겠습니다.
-
드릴 해설 1
드릴 인강 꼭 봐야함? ㅈㄴ 오래걸리는데
-
할수있어:)
-
옷핏 죽일텐데 학기 시작하면 운동 하야지
-
왜케 족간지인거임
-
강기분 어려워요 0
강기본 다끝내고 강기분2주차하고있는데 아직도 감을 못잡겠어요. 지문읽으면서 초반에는...
-
아닌가 이미 깨졋나 최근에 암거나 집히는대로 너무 많이 퍼먹음
-
[소개 및 성적인증] https://orbi.kr/00071877183 안녕하세요!...
-
방가서 할것 3
1 무한원점 2 베르테르 60번 3 미적분학2
-
안녕하세요, 생명과학 I 과목을 가르치는 하드워커입니다. ‘여러 가지 유전’...
-
실제로 대학가면 저렇게 fm 할 일이 있나요?!
-
매월승리 2
매월승리 판매 종료 됐던데 따로 다시 판매 하나요? 안하면 그냥 간쓸개 풀 것 같습니다
-
스칸데 3
옆자리인강듣는 소리가 이어폰을 꿰뚫고 다들리네 ㅅㅂ
-
"기출 분석하지 마라 3회독 이상은 낭비다 N제 실모 할거 많으니까 기출 오래붙들...
-
하지마시라니 7
https://www.youtube.com/@You-nova 계속 하시네
-
드릴 난이도순 0
근 2달동안 3,4,5 공통 미적 전문항 다풀어봤는데 3>>5>>>>4 느낌이네요...
-
맨날 서울대는 어쩌고 해외 명문대는 어쩌고 하는 애들은 뭐 알고 비교하는 거임?...
-
길막을 하고 있네 무슨 에휴 이러니까
-
헤어진지 1년반 넘은 전남친 미련도 있고 근황도 궁금한데 맞팔중이라 스토리 서로 다...
-
뒤지게 춥네 2
3월에도 패딩은 입어야겠어
-
저녁 ㅇㅈ 6
이힣
-
심심한아~~~ 7
공부해라
-
공대 간 사람들은 학생 때부터 가고 싶은데가 있었음? 12
대학 말고 학과 그냥 성적 따라서 가지 않음? 컴공 같은 거 아닌 이상에야 ㄱ학생...
-
ㅂㅂ
-
오옹 3
뭉탱이
-
반전에 대해 배워봅시다ㅏ.1. Cline. 일반화된 원이라고도 부르고, 원과 직선을...
-
렉카들 앞으로는 좀 사리려나
(0,0)에서 기울기 음수인 변곡점인듯
아 t=-1이구나 ㅂㅅ
흠냐 모든 f(3)이네 문제 쓰레기같네 풀기싫다
그렇네 케이스 무수히 많은거같은데
문제 퀼이 좀 이상하긴 한듯.. t=-1에서 접선이 x축일때랑 x=-1에서 변곡점가지고 기울기 음수라고 하면 답이 억지로 나오긴 하는데 경우의 수가 무수히 많이 나와서
경우의 수가 왜 무수히 많다고 생각하시나요??
답은 2번 나오는거 같은데
예를 들어서 f(x)=-5x^3+10 일때 경우를 생각해보면 변곡점이 x=0이고 t=-1에서 접선이 기울기가 음수면서 (0,0)을 지나서 조건을 만족하는데 이 f(x)말고도 최고차항의 계수를 조금 변화시키고 그때 상수값도 변경시켜서 t=-1에서의 접선이 원점을 지나게 하면 또 다른 f(x)가 생기고 이렇게 조건을 만족하는 f(x)가 무한하다고 생각해서 모순이라고 생각했는데 제 생각이 확실히 맞는지 모르겠어서 질문했습니다.
혹시 -1일때 최고차 양수인 변곡점인경우+ 0,0 지나는겅우랑,최고차항 음수일때 -1에서의 접선 인데 0.0을 지나는 경우 맞나요?
최고차항의 계수가 양수일때 x=-1에서 접해서 접선의 방정식이 x축인 경우도 있는거 같아요
근데 제가 말한거의 후자의경우가 계산이 안돼요
전자경우랑 작성자님이 말한경우 합해야 155나오긴하는데..
그래서 모순이 있는거 같다고 질문한거였습니다.. 경우의 수가 무수히 많은거 같아서
혹시 어디문제에여?