[하드워커 생1 칼럼] 무시
게시글 주소: https://orbi.kr/00072197585
안녕하세요, 생명과학 I 과목을 가르치는 하드워커입니다.
‘여러 가지 유전’ 단원(‘유전 현상’, ‘형질 교배’ 등으로도 불리는 단원)에서 쓰이는 잡스킬 4가지를 설명해드리기로 했는데요, 그 중
1. 이형 염색체 논리
에 대해서는 지난번에 설명했으니 궁금하신 분들은 다음 링크를 참조해주세요!
오늘은 잡스킬
2. 무시
에 대해 설명해보도록 하겠습니다.
지난번과 마찬가지로 제 교재 내용을 붙여넣고, 설명할 부분이 있으면 추가로 해보겠습니다.
“연관 중 일부의 유전자형이나 표현형이 하나로 고정되어서 나올 때, 표현형 가짓수나 확률 계산 시 이를 무시하고 계산할 수 있다.”
‘고정’되어서 나온다는 것이 포인트입니다. 어차피 연관 중 일부의 유전자형이나 표현형이 고정되어서 나오는데, 연관 전체를 전부 다 고려하면서 문제를 풀 필요가 없다는 것이죠. 이를 ‘무시’라고 표현합니다. 예를 들어 보겠습니다.
“예를 들어서 사람의 상염색체 유전 형질 (가) A = a, (나) B > b 가 있을 때, 다음과 같이 연관을 독립처럼 처리할 수 있다.
와
사이에서 나올 수 있는 표현형의 가짓수 = Bb와 Bb 사이에서 나올 수 있는 표현형의 가짓수
(㉠)와
사이에서 나온 자손의 표현형이 ㉠과 같을 확률 = Aa와 Aa 사이에서 나온 자손의 표현형이 ㉠과 같을 확률”
첫 번째 예시에서, (가)에 대해서는 어차피 Aa만 나오니까, 표현형 가짓수를 셀 때 (가)의 유전자는 고려하지 않아도 됩니다. 또한 두 번째 예시에서, (나)에 대해서는 어차피 우성만 나오고, ㉠은 (나)에 대해서 우성이니까, 확률을 구할 때 (나)의 유전자는 고려하지 않아도 됩니다.
이러한 과정을 거쳐서 “연관을 독립처럼”(또는 경우에 따라서는 3연관을 2연관처럼) 생각하면서 풀 수 있습니다. 이는 문제 조건 처리에 큰 도움을 줍니다.
“단, 확률의 경우 1로 고정되어 무시될 수도 있지만, 확률 자체가 0이 되는 경우도 있음에 주의해야 한다.”
예를 들어 위의 2번째 예시에서, 표현형이 ㉠과 같을 확률이 아닌, 표현형이 (가)에 대해서 Aa이고 (나)에 대해서 열성일 확률을 물었다면, 이 경우 확률은 ‘1로 고정되어 무시’되는 것이 아니라, 그냥 0이 됩니다. 가끔 이런 경우가 있으니 조심해야 합니다.
이제 연습을 한 번 해보겠습니다.
ex) 사람의 상염색체 유전 형질 (가) A = a, (나) B > b, (다) H/h, R/r, T/t 다인자(대문자 수=표현형)가 있다.
아빠가 Aa, ,
이고, 엄마가 aa,
,
일 때, 자손에게서 나타날 수 있는 (가)~(다)의 표현형의 최대 가짓수와, 자손의 (가)~(다)의 표현형이 엄마와 같을 확률을 구하시오.
포인트는 엄마가 BB이므로, (나)에 대해서는 우성만 나온다는 것입니다. 이 문제처럼 ‘단일인자+다인자 연관 형태(복합 다인자 문제 형태)’에서는 단일 인자 연관과 다인자 연관을 동시에 고려하면서 문제를 풀어야 하지만, 이 문제에서는 (나)의 표현형이 우성만 나오게 되면서, 표현형 가짓수를 구할 때 영향을 끼치지 않게 됩니다. 즉, (나)를 무시할 수 있고, 복합 다인자가 아니라 순수 다인자 형태로 문제를 풀 수 있습니다.
자손에게서 나타날 수 있는 (가)의 표현형은 당연히 2가지입니다. (나)와 (다)의 표현형 가짓수를 셀 때는, 다인자만 고려하면 됩니다. 아빠가 1|0, 1|1 이고 엄마가 1|0, 2|1 이므로, 자손 표현형은 4가지가 나옵니다. 따라서 자손에게서 나타날 수 있는 (가)~(다)의 표현형은 최대 8가지입니다.
확률을 구할 때도 마찬가지입니다. 엄마는 어차피 (나)에 대해서 우성이니까 (나)의 표현형이 엄마와 같을 확률은 ‘무시’해도 됩니다. 즉 (가)의 표현형이 엄마와 같을 확률은 1/2, (다)의 표현형이 엄마와 같을 확률은 3/8이므로 구하는 확률은 3/16이 됩니다.
‘무시’는 제가 소개하는 4개의 잡스킬 중 가장 쉬우면서, 가장 범용성 있는 내용입니다. 그만큼 많은 강사/학생들에게도 잘 알려져 있는 내용이지만, 잘 모르셨던 분들은 잘 배워가시면 문제 조건의 해석이나 계산에 도움이 될 겁니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다 나눠주고 원하는거 응시하는건가요?? 3모6모 다르게 응시해도 되는건가요???
-
여미새는 머임 1
어디 사는 동물임
-
찌질한걸까
-
음 피부가 엉망이야
-
.
-
겨우 방향 잡고 계산하고 실수한거 알아채고 다시 계산하고... 40분이 흘러 겨우...
-
개수 세나요 이거?
-
일하기 싫어...
-
내 ㅇㅈ에 이 옯티콘을 달아야 속이 시원했냐고!!!
-
완벽해지고 싶어
-
레몬은 동물이다
-
레어확인용 3
섹스
-
아 물론 상권이 ㅋㅋㅋ
-
인생 조언좀 해주세요 10
제가 1년 반 전쯤에 흑역사가 있었는데 그때 꽤 큰 사건이어서 학교에서도 다 소문...
-
밐냥이 0
커여웡
-
수능이 됐던 뭐가 됐던 입시판 빨리 탈출 ㄱㄱ혓!
-
미적분 뉴런 3
제가 알기론 미적분이 딥해서 뉴런 다음에도 엔제나 실모 벅벅 안 하고 뭐 더...
-
할 얘기가 없는데 공부얘기 하기 싫어서 다른 얘기하면 쓸데없는 소리 하지 말라고 하셔서
-
나 근데 여자도 아님
-
료랑 사귀고싶어.. 11
나에게 행복을 쥬눈 여자는 엄마할머니 제외하고 야마다 료양 뿐임..
-
얼굴깐거 딱1번(나꼴릴때) 여장인증 종종(나꼴릴때) 했는데 메타 안 탈 때만...
-
솔직히 sm 아이돌들 과사보면 몇명 빼고는 솔직히 걍 ㅍㅌㅊ~ㅅㅌㅊ 일반인인데 걍 탈바꿈을 시켜놓음
-
큐브 재밋음 4
최저도 안 나오지만 그냥 오르비하는거보단 큐브내리면서 오르비하면 뭔가 활동적이게된느낌?
-
잘 할수잇을랑가 모르겠네
-
백석대 순천향대 0
백석대 컴퓨터공학과 vs 순천향대 건축학과(5) 어디가 더 괜찮나요??? 거리는...
-
진실을 밝혀랏
-
쌤 덕에 수능 나쁘지 않게 쳤어요
-
사야하는데 고민됩니다ㅏ
-
하나도 잠이안오는데
-
실모시즌되면 강사실모1개, 서바1개 풀고 각각 점수 높은 5명 붙여줬는데 한번도 두...
-
노무현이 살아있다는게 더 중요함 ㅋㅋ
-
뭐지다노..
-
여태 공부하면서 수능문학만큼 좆같은적이없었다 고1때부터...
-
재종 친목질 3
아예 안하는게 좋은가요ㅠㅠ
-
김동욱 수특강의 3
올라오나요? 올라오면 언제 개강이고 강의만 듣고 따로 수측분석 안해도 되나요?
-
사탐 현강 0
사탐 현강듣는건 아깝나요..?
-
중경외시 이상으로는 16
삼수도 생각보다 많은듯 전적대는 삼수 ㄹㅇ귀했는데
-
집안 사정상 제 돈으로 몰래 다녀야 할 것 같은데 가능한가요??
-
갑자기 궁금해지네
-
저의 나이는 뭘까요 13
ㄹ
-
쩝 메타 끝난듯
-
할 사진이 없네ㅋㅋ 사진 찍으면 ㅈㄴ 못생겨서 바로 지움
-
내년에 설경에 앉아있어야지
-
夏の肖像
-
.
-
표절했다고 0
잘못한건 맞는데 그냥 강의 좀 하는거가지고 ㅈㄴ뭐라하네
-
편의점 2~3곳 지원넣었는데 다 읽씹당함 나이많으면 잘 안받아주나? 20대중반이여서 슬프노
-
보통 결혼하고 아기 가지면 술 끊고 자제하나요? 아니면 사람은 안변하는지?
-
퉆 안 해주면 푸앙푸앙 울 거임뇨
감사합니다:)
감사합니다!