치환해서 극한값 구하는거 외워야됨?
게시글 주소: https://orbi.kr/00071864922
이 문젠데왜 치환하는지도 모르겠고 이해가 잘 안감... 2번 풀이처럼 푸는 거 외워야됨?
수렴하는 극한값을 bn이라는 수열로 치환한다음 an을 bn으로 표현해서 수렴렴렴 계산산산 한다는 아이디어인가?
강의에서도 안알려줘서...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기코 2회독하고 한완수로 한바퀴 더 돌렸는데 입문 n제는 몇권 정도 푸는게 좋을까요?
-
좋은 아침 2
오늘은 다시 열심히 해볼게요
-
좋을텐데 0
너의 손 꼭 잡고 그냥이 길을 걸었으면내겐 너뿐인걸 니가 알았으면 좋을텐데
-
관세가 .. 2
이거 뭐노 ㅋㄴㅋㅋㅋㅋㅋㅋ 미국도 드디어 미쳤구만
-
정상화되길 바랐다면 너무 큰걸 바랐던걸까
-
일단 학원에서 신청했는데 학원을 그때까지 다닐지 모르겠어서 교육청가서 중복신청...
-
ㅇㅂㄱ 3
좋은아침이에요
-
D-224 0
영어단어 영단어장 day 12(480단어) 모르는 단어만 복습 +day 4 추가...
-
자러감 3
학교 좀만 늦게 가야지
-
틀딱입니다. 수능수학을 준비한다느 가정하에, 개념원리 등을 한번 돌리고 이후 볼 수...
-
왜냐면 이제부터 기다림이 24시간이 넘을 때마다대가리를 존나 쎄게 쳐서 제 머릿속을...
-
상호관세 25퍼센트 ㅋㅋㅋㅋㅋㅋ 미국 국민이 멍청하니까 온 세상이 고통받는구나
-
얼버기 1
ㅎ
-
빅포텐 문항수 0
왤케 적냐 병호야 뒤질래
-
얜 ㄹㅇ 눈풀로 풀리네 30번인데 이건 좀
-
죽여줘... 3
느어엉
-
졸려..
-
아가 기상 0
기요미 나 일어났어
-
얼버기 0
좋은아침되세요
-
[속보] 트럼프, 상호관세 발표…韓 25% 日 24% 中 34% 부과 10
미국 정부가 한국에서 생산돼 미국으로 수입되는 제품에 25%의 상호관세를 부과한다고...
-
내가 만든 내 세상이다
-
얼버기 4
안농
-
오르비 안녕히주무세요 10
해뜨고 봐요
-
똥먹기 6
미소녀 똥 우걱우걱
-
정신 차리고 밀린 과제도 끝내고 취약 파트 공부도 시작하고 수능과 운동까지 도전한다
-
굿밤 ㅇㅈ 0
좆자기학 과제 다 끝내고 잔당 이해 아예 안되서 손으로 책에 있는 내용 그대로...
-
이젠 글이 안올라와
-
수학 N제 3
높3정도가 풀기 좋은 N제 추천해주세요 지인선 N제 풀만한가요
-
기출 할때가 아닌가
-
안녕히 주무세 3
지 말고 밤새야지 어디가노
-
내일 하겟읍니다
-
비수도권 평준화 일반고 내신 2.9인데 학종으로 컴공이나 전자공학과 노린다면...
-
벌써 3시 10
-
괜찮겠지 잘자요 다들~
-
수면패턴 ㅈ됨 0
학교에서 풀수면 때려야겠다 스발;;
-
비교 2
ㅅㅂ 이제 와서 후회되네 님들은 어디가너
-
존나 우울하네 ㅅㅂ 재수끝나자마자 먹어야하나 아님 지금부터 먹어야 하나 착잡하다그냥
-
이날개예쁨... 12
-
피글린이 내 다이아 갑옷 뺏어감 ㅠ
-
잘지내니 4
잘하고 있겠지 그래.. 보고 싶다 그냥..
-
너로 지브리 사진을 만들엇서
-
나는 짜피 둘 다 포함될텐데
-
요즘 꽂힘
-
확통질문 5
이거 이렇게 풀어도 괜찮아요?
-
가야만 해
-
갈 곳이 없다
-
과외쌤이 오르비언이면 18
성적내기해서 이기면 덕코 삥뜯기 했을거 같아요
-
응응
? 뉴런에 진짜 안나와요?
저거 킥오프에요
수렴렴렴 계산산산 다 따라하는구나
뉴런 들었어서 뇌리에 박힘요 ㅋㅋㅋㅋ
걍 1번처럼만 풀어도 상관없을듯
근데 또 엄밀한거 좋아해서
저건 너무 야매인데 2번 풀이는 너무 어려운?
누가 2번처럼 풀이 쓰라고 시키면 막힘없이 쓸 줄 아는 실력 만들어두고
실전에서 1번처럼 하셔야합니다
이게맞다
아 그게 정배군요 감사합니다
차이는... 없긴 해요
근데 위에는 그냥 야매로 빠르게 풀 수 있는데,
아래는 발상이 잘 떠오르지도 않고 왜 치환해야되는지 이해가 잘 안가서요.
지금처럼 단순한 꼴에서는 무조건 1번으로 풀어야하지만
복잡한 꼴로 문제가 주어지면 2번으로 접근하는 방법도 생각해야 한다라는 김기현T의 생각이 녹아있는 것 같네요
아하 그렇군요 정말 감사합니다
근데 대충 본문에 써둔 걸로 이해하고 아래 풀이도 공부해야겠네요...
대충 분모분자에 극한 나누어주면 계산 빠르게 되지 않나요
분모 분자에 뭘로 나눠야 하나요?
그냥 수열 an 띡 하고 준거라
분모분자 모두 0으로 수렴하지 않으니까 위 아래 둘다 리미트 씌워서 계산하면 되지 않나요
0/0꼴에서 수렴값이 16/7이 나올 수도 있는 거 아닌가요? 전 분모 분자 수렴성이 확실하지 않아서 리미트 쪼개는게 불가능하다고 생각하거든요.
쪼개면 안 됩니다 원래
근데 제가 말씀드렸듯이 쟤는 상수곱과 상수 덧셈으로 구성한 거라 0/0이 나올 수 없어서 쪼개도 됩니다
정말 감사합니다 사랑합니다
둘이 0/0꼴이 안되니까 가능하죠
이해했읍니다 감사합니다
수능은 저렇게 풀면 멍청한 거고 내신 서술형에선 저렇게 풀어야 합니다.
아래에서 치환을 해야 하는 이유는 어떤 수렴하는 수열 a_n 과 b_n에 대하여 이것들의 사칙연산으로 만들어낸, 또는 상수의 곱 혹은 덧셈/뺄셈으로 만들어낸 수열이 수렴하며 그 극한값은 기존 극한값에 해당하는 연산을 취한 것과 같다는 것이 알려진 사실인데, 저기서 주어진 합성 수열의 극한값으로는 a_n이라는 수열에 대한 정보를 직접적으로 얻을 수가 없습니다. (사실 유리함수처럼 만들어서 어떻게어떻게 비벼볼 수는 있는데 그게 치환하는 거랑 다를 바가 없습니다.) 그래서 치환을 통해 a_n을 수렴하는 수열 b_n에 사칙연산을 적용해서 만든 수열로 간접적으로 구성하여 보는 겁니다. 우리가 아는 것, 즉 전제로 주어진 사실들만 사용해야 하니까요.
다만 주어진 상황에서 극한값 lim (5a_n - 2)이 존재한다고 가정을 하는 것이 가능하므로, a_n의 극한값 역시 존재하며 당연하게도 그것의 사칙연산으로 만들어낸 수열인 (2a_n +1)/(4a_n-3)의 극한도 존재함과 동시에 그 극한값을 a_n의 극한값을 alpha로 두고 상응하는 사칙연산을 취하여 구할 수 있습니다. 이런 풀이가 수능에서는 가장 일반적입니다.
엄밀함을 요구한다면 치환 없이 푸는 풀이는 0점이라고 보면 됩니다.
선생님 정말 정성스러운 답변 감사합니다.
다만 의문점이 하나 있는데, an의 극한값을 알파로 두고 사칙연산을 한다고 할때,
(2an + 1)/(4an - 3)이 0/0꼴이라면 극한을 쪼개서 계산하는게 불가능하지 않나요?
애초에 an의 극한값을 알파로 두고 사칙연산을 하는 것부터 엄밀함과는 거리가 멀지만 궁금해서 여쭤봅니다.
a_n의 극한이 존재한다고 가정했을 때
애초에 식의 형태 상 분자 분모가 둘 다 0일 수는 없고, 분모 또는 분자만 0인 것도 불가능합니다. 값이 0이 아닌 실수로 나온다는 것이 원래 전제이고 alpha를 사용하는 것은 우리가 쌈마이로 도입한 전제니까요.
아 그렇네요 정말 감사합니다!