치환해서 극한값 구하는거 외워야됨?
게시글 주소: https://orbi.kr/00071864922
이 문젠데왜 치환하는지도 모르겠고 이해가 잘 안감... 2번 풀이처럼 푸는 거 외워야됨?
수렴하는 극한값을 bn이라는 수열로 치환한다음 an을 bn으로 표현해서 수렴렴렴 계산산산 한다는 아이디어인가?
강의에서도 안알려줘서...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅜㅜ 심심띠예
-
난 왜 0
내일 승리 현강인데 갑자기 두각 앱이랑 홈페이지 둘 다 재원생이 아니라는거지 이런건...
-
아이고 8
내 공백
-
도저히 못풀겠네
-
관세지문있음 필독
-
내가 아는 실전개념 다 넣어서 밤세서 해설 쓸 예정 단순 해설이 아닌 개념설명까지...
-
둘다 보내고 나라 정상화 좀 해봐 너네가
-
어제 확통때메 빡쳐서 수학을 안해버린...
-
벌써 10년전이네요 ㄷㄷ
-
파이팅
-
ㅋㅋㅋㅋㅋ
-
머가 이득인가요
-
갑자기 우두두두 들어오네요
-
랜10005 2
빵가루
-
내신도 좋아야되고 탐구도 투과목 해야되는거임? 갑자기 궁금해짐
-
갑자기 든 생각인데 21
애니보다 든 생각인데... 어쩌면 학창시절에 나를 두고 미소녀 둘이 싸운 일이 있었지 않았을까?
-
기출보다 어려운것도 몇개보이는데
-
공통기준으로요 시대컨 한번도 안풀어봤고 문재 스타일이나 퀄리티 어떤 느낌인지...
-
무슨과목인가요?
-
아 신난다 4
동방에서
-
하끼발 4
소주샹4병반들이키고 눈앞리빙글빙글 술깨고 다시 올게요
-
드릴,드릴드로 쭉 밀어도 되나? 지금 공통 n티 푸는중인데 수1day3개...
-
또 기다려야되는구먼
-
작년에 어려워서 하이엔드만 유기햇엇는데
-
중대간호입결 1
정사로 가려면 대충 화미영물지 기준으로 백분위 몇씩받아야됨?
-
아니 하이엔드 진짜 ㅈㄴ어렵네.... 미들은 그래도 80퍼는 나오는거 같은데...
-
오늘까지 야식 1
황올에 맥주
-
닉변 오? 10
오오!!
-
밥챙겨주고 재워주면 괜찮을거같음 근심없는 삶을 살고싶어
-
이ㅇㅇ 너 말고
-
그냥 다 리셋 성별부터 모든것이
-
24 3덮 수학 10
100 ㄷㄷ 28찍맞 난이도는 적당히 어려운편 어제 망한 8덮 복수 성공
-
국어 4
3모 1컷 -> 수능 백분위 99 이상 가능함?
-
3모 이정도면 얄심히 하면 으데까지 갈수잇을까... 5
국어 3 수학 1컷 영어 1 쌍윤21 국어를 못본게... 느므 한이다.ㅣㅣ
-
아 이 닉을 한 사럼이 대체 오ㅑ있냐고 닉변하려는데 아ㅐ
-
작수 기준 말고 24나 23기준으로
-
이제 고3 첫 중간고사 시험기간인데, 국어 시험범위가 수능특강 문학, 독서...
-
생윤 1
공부한만큼 나오나요?
-
난 내가 무슨 실모를 풀어도 1등급이라고 생각하면서 살아왔는데 계산 몇개 나가니까...
-
기하 개념 돌리고 기출하려는데 개념강의 뭐듣죠?
-
이거 많이 어렵나요?
-
하루 동안 총 좋아요 400개 넘엇는데 관리자님 이정도면 최고기록 아닙니까??
-
둘 중 뭐가 좋을까요? 그리고 기하 개념은 뭘로 잡는게 좋을까요?
-
통계 안외우고 맞추신분들은 어떻게 맞추셨나요? 저는 ebs인강 들었었는데 거기서...
-
언기쌍지?
-
금요일에 주간을 끝낼 자극적인 컨텐츠가 필요해요
-
난 초6
-
관독 끝! 0
오늘 공부 열심히 했어
-
오노추 8
최애곡 중 하나인 아이유의 하루 끝
-
독재끝나고 항상 너무 예민해져잇음 밖으로 표출을 하지는 않는데 앞에 가고 있는...
? 뉴런에 진짜 안나와요?
저거 킥오프에요
수렴렴렴 계산산산 다 따라하는구나
뉴런 들었어서 뇌리에 박힘요 ㅋㅋㅋㅋ
걍 1번처럼만 풀어도 상관없을듯
근데 또 엄밀한거 좋아해서
저건 너무 야매인데 2번 풀이는 너무 어려운?
누가 2번처럼 풀이 쓰라고 시키면 막힘없이 쓸 줄 아는 실력 만들어두고
실전에서 1번처럼 하셔야합니다
이게맞다
아 그게 정배군요 감사합니다
차이는... 없긴 해요
근데 위에는 그냥 야매로 빠르게 풀 수 있는데,
아래는 발상이 잘 떠오르지도 않고 왜 치환해야되는지 이해가 잘 안가서요.
지금처럼 단순한 꼴에서는 무조건 1번으로 풀어야하지만
복잡한 꼴로 문제가 주어지면 2번으로 접근하는 방법도 생각해야 한다라는 김기현T의 생각이 녹아있는 것 같네요
아하 그렇군요 정말 감사합니다
근데 대충 본문에 써둔 걸로 이해하고 아래 풀이도 공부해야겠네요...
대충 분모분자에 극한 나누어주면 계산 빠르게 되지 않나요
분모 분자에 뭘로 나눠야 하나요?
그냥 수열 an 띡 하고 준거라
분모분자 모두 0으로 수렴하지 않으니까 위 아래 둘다 리미트 씌워서 계산하면 되지 않나요
0/0꼴에서 수렴값이 16/7이 나올 수도 있는 거 아닌가요? 전 분모 분자 수렴성이 확실하지 않아서 리미트 쪼개는게 불가능하다고 생각하거든요.
쪼개면 안 됩니다 원래
근데 제가 말씀드렸듯이 쟤는 상수곱과 상수 덧셈으로 구성한 거라 0/0이 나올 수 없어서 쪼개도 됩니다
정말 감사합니다 사랑합니다
둘이 0/0꼴이 안되니까 가능하죠
이해했읍니다 감사합니다
수능은 저렇게 풀면 멍청한 거고 내신 서술형에선 저렇게 풀어야 합니다.
아래에서 치환을 해야 하는 이유는 어떤 수렴하는 수열 a_n 과 b_n에 대하여 이것들의 사칙연산으로 만들어낸, 또는 상수의 곱 혹은 덧셈/뺄셈으로 만들어낸 수열이 수렴하며 그 극한값은 기존 극한값에 해당하는 연산을 취한 것과 같다는 것이 알려진 사실인데, 저기서 주어진 합성 수열의 극한값으로는 a_n이라는 수열에 대한 정보를 직접적으로 얻을 수가 없습니다. (사실 유리함수처럼 만들어서 어떻게어떻게 비벼볼 수는 있는데 그게 치환하는 거랑 다를 바가 없습니다.) 그래서 치환을 통해 a_n을 수렴하는 수열 b_n에 사칙연산을 적용해서 만든 수열로 간접적으로 구성하여 보는 겁니다. 우리가 아는 것, 즉 전제로 주어진 사실들만 사용해야 하니까요.
다만 주어진 상황에서 극한값 lim (5a_n - 2)이 존재한다고 가정을 하는 것이 가능하므로, a_n의 극한값 역시 존재하며 당연하게도 그것의 사칙연산으로 만들어낸 수열인 (2a_n +1)/(4a_n-3)의 극한도 존재함과 동시에 그 극한값을 a_n의 극한값을 alpha로 두고 상응하는 사칙연산을 취하여 구할 수 있습니다. 이런 풀이가 수능에서는 가장 일반적입니다.
엄밀함을 요구한다면 치환 없이 푸는 풀이는 0점이라고 보면 됩니다.
선생님 정말 정성스러운 답변 감사합니다.
다만 의문점이 하나 있는데, an의 극한값을 알파로 두고 사칙연산을 한다고 할때,
(2an + 1)/(4an - 3)이 0/0꼴이라면 극한을 쪼개서 계산하는게 불가능하지 않나요?
애초에 an의 극한값을 알파로 두고 사칙연산을 하는 것부터 엄밀함과는 거리가 멀지만 궁금해서 여쭤봅니다.
a_n의 극한이 존재한다고 가정했을 때
애초에 식의 형태 상 분자 분모가 둘 다 0일 수는 없고, 분모 또는 분자만 0인 것도 불가능합니다. 값이 0이 아닌 실수로 나온다는 것이 원래 전제이고 alpha를 사용하는 것은 우리가 쌈마이로 도입한 전제니까요.
아 그렇네요 정말 감사합니다!