[칼럼] 돌림힘 평형에 대한 접근(1편)
게시글 주소: https://orbi.kr/00071622839
안녕하세요. 저는 25 수능 현역으로 물리학2를 응시했으며, 44점을 맞아 2등급..이지만 조금이나마 물리학2를 공부하시는 분들에게 도움이 되었으면 하는 마음으로 이 칼럼을 적게 되었습니다. 사소한 변명을 하자면 6평 때 48을 맞아 2등급을 맞은 적을 제외하곤 모두 1등급이었습니다만(이렇게 보니 평가원은 9평을 제외하곤 모두 2네요..), 제 스스로 자격이 부족하다고 생각이 들어서 쓸지 말지 고민을 많이 했지만 겸손하게 글을 적어보고자 합니다. 자기소개는 여기까지 하고 본격적으로 시작해보겠습니다.
목차
1. 기본 돌림힘 평형
2. 질량 중심과 그 응용
3. 대상을 계로 인식하기
------------------
4. 2차원 돌림힘의 2가지 접근법(2편)
1. 기본 돌림힘 평형
돌림힘 평형 문제에서 주어지는 근본적인 조건은 크게 2가지입니다. 첫 번째는 힘의 평형이고, 두 번째는 돌림힘 평형입니다. 이 조건을 활용하는 가장 기본적이며 중요한 생각은 해당 물체가 평형이라면 어느 곳으로 축을 잡아도 돌림힘 평형이 성립한다는 것입니다. 즉 계산을 최대한 간단히 할 수 있도록 축을 설정하는 편이 유리하겠죠? 또한 이 생각에서 자연스럽게 상황이 변화해도 그 변화한 상황과 이전의 상황에서 발생한 토크의 변화량끼리 같다는 식을 쓸 수 있습니다. 다음 문제에서 간단히 적용해봅시다.
어렵지 않은 문제라 잘 푸셨을 것 같습니다.
저는 위와 같이 풀어봤는데요. 아마 평형을 유지할 수 있는 x의 최소와 최대의 상황에 대한 이해는 당연히 될 거에요. 전체 무게가 P에서 Q로 변화하게 되는 상황인 것이죠. 즉, 전체가 d만큼 변화한 토크=A가 x2에서 x1으로 변화하며 생성한 토크로 식을 세울 수 있겠죠? 이렇게 식을 작성하면 경제적으로 문제를 풀 수 있습니다.
2. 질량 중심
질량 중심이라는 것은 물체 전체의 질량 중심점을 의미합니다. 이를 이용하면 전체의 무게가 어디에 있어야 하는 지를 생각하며 문제를 풀 수 있는데요. 모든 질량을 중심점에 모으게 되면 그 점을 중심으론 돌림힘이 발생하지 않는 점이라는 의미도 있습니다. 즉, 이를 이용한 풀이도 1번의 풀이와 근본적으로 다른 풀이는 아니라는 점. 이러한 관점을 이용하면 힘을 합치거나 분배할 수도 있습니다.
즉, 이렇게 정리해볼 수 있을 것 같습니다. 내분을 역으로 이용하면 분배할 수도 있겠죠? 이를 이용해 문제를 풀어봅시다.
풀어보셨나요?
이런 식으로 질량 중심을 활용할 수 있겠죠? 조금 더 활용해봅시다.
1번의 풀이와 결합하고, 힘을 분배하면 빠르니 조금 더 응용이 필요해 어려웠을 수 있습니다.
이처럼 질량 중심을 활용해 힘을 합치거나 분배하여 문제를 직관적으로 빠르게 풀어나갈 수 있습니다. 나아가 질량 중심이라는 개념을 활용하면 물체가 막대에서 움직일 때 질량 중심의 속도를 구할 수 있습니다.
만약 질량 중심의 위치 변화가 없다면 위치가 변하는 물체끼리 변화량의 합이 0이면 평형이 유지가 되겠죠? 실제로 질량 중심의 위치가 변화한다고 하여도 위 공식을 활용하면 조금 더 간단히 상황을 기술할 수 있을 것입니다. 다음 문제로 정리해봅시다.
처음 풀면 좀 당황스러울 수 있는 형태의 유형입니다.
ㄷ은 스스로 풀어보세요!
3. 계로 관찰하기
여러 층으로 구성된 막대를 보면 돌림힘 평형을 여러 번 써야 하는 번거로움을 느끼실 수 있습니다. 그 때 여러 층으로 구성된 막대를 전체적으로 한 번에 관찰해봅시다. 가장 위 막대에 모든 줄이 종속되어 있는 경우에 계로 관찰한다는 것의 의미는 다음과 같이 유도 및 해석할 수 있습니다.
만약 다른 막대에도 줄이 연결된 경우는 어떻게 해석될 수 있을까요?
이처럼 P와 Q를 합친 한 막대로 인식하고 a, b ,e가 연결된 계로 인식할 수 있습니다. 역학에서 계에서 내력이 0인 것을 인지하는 것과 유사하게 생각할 수 있을 것 같습니다.
이것을 이용해 문제를 한 번 풀어볼까요?
한 번 풀어보셨나요?
이렇게 계로 관찰할 수 있습니다. 사실 위에 질량 중심 속도 문제도 이와 같은 이유로 합칠 수 있었던 것이기도 합니다. 한 문제 더 봐보죠.
질량 중심을 잘 이용해야겠죠?
간단히 풀리는 문제죠? 이제 줄 3개가 연결된 상태의 문제를 풀어봅시다!
풀어보셨나요?
계로 인식하면 최대, 최소가 되는 상황을 빠르게 인식할 수 있다는 장점이 있긴 했지만 계산할 때는 크게 유리한 지점은 없었네요. 이처럼 줄이 3개 이상 연결되는 경우엔 계로 상황을 인식하는 것이 상황 판단에는 유리할 수 있지만 계산할 때는 꽤 복잡해진다는 단점이 있습니다.
이상으로 1편을 마치고자 하는데 도움이 되셨을지 잘 모르겠습니다. 최대한 열심히, 오류 없이 전달하고자 했는데 오류가 있다면 지적 달게 받겠습니다! 2편을 적을 수 있는 상황이 된다면 2편으로 돌아오겠습니다. 긴 글 읽어주신 것에 감사드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
https://v.daum.net/v/20250404093343106 브래드...
-
대학 못하면 인생 종치는 수준
-
ㄱㅊ다 이건
-
윤석열<-시위해야 막을수있음 지금상황이 난 계엄령 그당시보다 더 지금이 더 상황이...
-
밑밑 게시물 댓글많아서 누가 달았는지 다 쭉 봤는데 모르는 사람이 한명도 없음 진짜...
-
그게 나야 바 둠바 두비두밥~ ^^
-
그냥저매추받은건데
-
참치캔 들어가는 볶음요리 위주로 만들어 먹거든요 그냥 참치에 함유된 기름기나...
-
그래그래
-
경남 지역인재 됩니다 작수 사회문화 생명과학 97,96이었습니다 만약에 메디컬을...
-
동방프로젝트 노래에다가 안철수 합성시킨 노래 있었는데 그게 너무 강력해서 그거밖에 안떠오름
-
후보 예상 11
민주 이재명 50% 국힘 오세훈 20% 조국 x 개혁 이준석 30% 이정도일듯?...
-
걍 마지막날에 우리 분대끼리만 햇엇음 조교들 몰래 이게 ㄹㅇ 감동이엇는데.....
-
안철수 좋은데 8
이공계 대통령 진짜 좋긴 할 듯... 똑똑하기도 하고
-
내신 대비할때 수학 문제풀이력 올릴겸 미친개념 미적분 듣고나서 n티켓 푸는거 괜찮을까요?
-
프사 별로네 8
이게 제일..
-
그때 맞은 걸 지금 틀리고, 그때 틀린 걸 지금 맞혔네 ㅋㅋ 심지어 풀이법도 달라짐...
-
아무것도 못하겠음 어제 제멀 10분 연습하고 오늘 제멀 했다고 온몸 근육통 오는건...
-
오르비에 들어와야되겠죠
-
떳냐? 2
대 잼 잼
-
나도 투표권 가질 수 있었는데…
-
점심이 아직도 소화가 안돼서 그냥 놀기로 함
-
배고 5
파요
-
주한미군 철수할듯
-
뉴진스 관련 기사가 하나 떴는데 무려 친권제한소송(!) 이야기까지 나왔네요. 2
https://biz.chosun.com/industry/business-ventur...
-
요즘 젤웃긴사람 0
카더가든 김원훈 추성훈
-
듣기만해도 끔찍했음 대일외고였나 어딘지 기억이 안나네
-
이재명 김문수 한동훈 이런애들 또 나가면 걍 박근혜 싫어서 문재인 문재인 싫어서...
-
진짜 체력 없는데 팝스해서 온몸이 아픔… 다른애들은 체력이 있어서 팝스해도 ㄱㅊ던데...
-
진해 벛꽃 구경 15
-
어디 학교에서 보는지 나중에 나오나요?
-
연고공이 목푠데 그냥 미적 유지할까요 아니면 확통런을 해야할까요? 미적은...
-
ㄹㅇㅋㅋ 힌트: 손으로 풀 수 있습니다
-
닉변할까요 3
파며늘한다
-
수업끝 1
술마시러
-
오르비 은따 4
= 나
-
입시 커뮤 오르비(아님)
-
석열이가 자신은 정당하다고 결의한 장문의 편지 쓰고 승천하면 진심으로 승리 가능함
-
글이나 공부 추천 해주세욥
-
심심아 돌아와서 똥글써줘
-
근처 러셀이랑 모교가 마감인데ㅠㅠ 다른 학원도 가능한 곳 있나요
-
강민철 현우진 1
한살차이였다니... 충격 현우진쌤은 뭔가 인간이 아닌 느낌임
-
내란(폭동)의힘 사상검증 더불어만주당 더불어공산당 더듬어만진당 더불어중공당
-
전 원래 영어교육과 이쪽으로 관심이있었는데 몇달전부터 뉴스보고 세상 돌아가는거...
-
기분 좋아서 선착순 세명 덕코
-
곧 솔로 10000일째임
-
앨범 언제나와 ㅠㅠㅠ
물2 재밌겠다
현장에서 풀맞한 문제들이...