[자작문제] 수1 삼각함수 문항
게시글 주소: https://orbi.kr/00071483869
객관식이라 답에 뭔갈 걸긴 좀 그렇고
출제자의 의도대로 풀어서 풀이를 올려주시는 분께는 5000덕을 드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
안보이지 구글로 들어오면 보이는데
-
강아지 하실 분?
-
으흐흐 벌레랑 3판만 하실분
-
엄…기은 0
오늘부로 엄기은지지를 철회한다 오늘부터 지지관계에서 벗어나 엄기은과 나는 한몸으로...
-
감사합니다
-
휴식 끝 2
다시 1주일 동안 달려야지
-
잘래그냥 4
잘래그냥 잘자요!!! 이 기요미 들아!!!!
-
6모 수학ㄱ? 8
같은학원에서 접수하고 점심시간에 46문제 완답여부로 승패결정
-
여러분 잘자욥♡ 4
내가 항상 응원하는거 알지♡
-
[첫 칼럼] 합격자가 말아주는 고려대 논술 사고과정!!! 8
안녕하십니까 수리논술러 fr0mhell 입니다! 이번 칼럼에는 작년에 처음 시행한...
-
한국시리즈 야구장에서 5회부터 실모 풀면 됨 ㅇㅇ 그 성적이 수능장 환경변수 고려한 찐 실모임
-
뭔가 에스컬레이드가 더 신뢰감이 감 미적 엑셀트러스 공통 엑셀 산 거 다 풀고...
-
2025년 3월 3주차 韓日美全 음악 차트 TOP10 (+3월 2주차 주간VOCAL Character 랭킹) 6
2025년 3월 2주차 차트: https://orbi.kr/00072602243...
-
3더프에서 남는 사탐 시험지 중고마켓에 팔아도 문제없죠? 0
궁금하네요
-
학원 추천 1
독재 학원처럼 자습 위주인데, 모르는 거 질문할 수 있는 질답 조교 계신 곳 있나요?
-
왤케 볼게없ㄴ노
-
2025 수능에 비해 평이하다고 봅니당 전반적으로 역학이 무난하네요. 준킬러인...
-
수학 N제 추천 5
1. 지인선 N제 22번 15번이 좀 어렵긴 한데……… 풀고 난 후 쾌감 지림...
-
기파급 하고있는데 가독성이 좋아서그런지 영상보다 인강보다 더 이해가 잘됨.....
-
진짜 자야지 11
모두 잘자
-
한종철 생1 기출 문제집 좋나요?
-
ㅈㄱㄴ
-
힘들다 해보자
-
이과분들
-
식단 ㅇㅈ 2
운동 꾸준히 할거임 시발 감기만 빨리 낫면 좋겠다
-
토욜날에 혼자 집에서 롤하다가 정병걸려서 오르비도 안하고 혼자 기타치다가 뻗었는데...
-
자기가 못생각하니 저 풀이의 실전성은 별로다 이거 곱씹어볼수록 너무 웃긴말같음...
-
파데+쉐이딩은 과하나?
-
잇올갈까 러셀갈까 일단 모교는 절대 안감ㅎ
-
어그로 정말정말 죄송합니다…저 정말 간절하니 한번만 글 읽어주십시오 ㅠㅠ...
-
그거 그냥 *******이잖아 뭐하러 하는 거지 할거면 ******던가
-
양 적은 사탐 뭐 있음? 사문? 생윤?
-
야식사러편의점가기 11
뇸뇸뇸
-
괴수님 문사님 제발 답변해주세요
-
개초딩잼민이새끼라서 음 맞는말이야
-
사탐 기출분석 2
강사의 기출 커리를 타면 따로 마더텅이나 자이 풀 필요 없음??
-
ㅈㄱㄴ
-
하루에 19시간은 걍 구라같은데 랭킹보니까
-
맞맞맞팔팔팔구구구
-
삼반수 가자! 1
실패하더라도 한번더봐야 미련이 안남을듯
-
아는 선생님이 없다
-
나는 내가 게이라는 사실을 죽어도 못말할것 같음
-
잠깐 안들어오고 앱도 삭제했는데 드라마틱하게 공부시간이 느는건 없었음 생각해보니까...
-
절대 오르비 접속이 뜸해진 참에 도망가려는데 아님 ㅇㅇ 절대 오르비보다...
-
ㅍㅅㅌ 일반고 내신 2.3인데 모고는 지금까지 한번빼고 올 1이고 이번 3모 국수영...
-
일단 난 개념베스트 강좌는 발췌독으로 들음 그리고 CSAT 완강, DEEP 강의...
-
이번3모 화작80(화작 2틀) 미적1컷 영어3 탐구 1 3인데 탐구 3등급인건 아직...
펜 꺼내기 귀차는데, 눈으로 안 풀려 ㅜㅜ
막 그닥 복잡하진 않아요..!
13번이라기엔 너무 어려운데요ㅠㅠ 이상한 곳만 보고있는 건가
앗 좀 어려운가요..ㅠ 발상적인 부분이 조금 있긴 합니다
여기까지만 보고 사인 같다 해석을 못하겠네요
내대각의 성질을 이용해서 각을 열심히 돌리다 보면 재밌는 조건이 찾아집니다! 풀이는 다른 게시글에 올려두겠습니다 참고해보세용
간간히 봐서 풀긴 풀엇는데 개 지랄로 품 ㅜㅜ
ㅋㅋㅋㅋㅋㅎ 어떻게 푸셨나요
CE=CT인 선분 BC위에 점을 T, 원의 중심을 O, PO와 AE의 교점을 R이라 하면,
O,R,A,D는 공원점이고, 조건에 의해 DP//AF이다. (AD와 PF가 평행하지 않으므로)
각 ORE = 각 EDA (원주각) = 각 PDA - ㅠ/2 = 각 DPF - ㅠ/2 = 각 APC.
즉, CP=CR이고 ET//PR⊥DE이므로, ET는 접선이다.
접현각에 의해 각 TEP는 45도이다.
즉, 삼각형 CEP를 보면, CP를 1:2로 내분하는 점 T에 대해.
각 TEP=45도이고, CE=CT이고, PE=8sqrt(2)이다. (Sin법칙.)
따라서 삼각형 CEP가 결정되엇다. (코사인 3번인가 염병하면 길이 다 나온다.)
원주각 아니고 내대각이네 저기
이게 이렇게도 풀리는군요..ㄷㄷ T 잡을 생각을 어떻게 하셨는지 궁금한데 혹시 여쭤봐도 될까요?
각 열심히 돌리다가 보엿습니다 ㅋㅋ.. 거의 직관적으로 본 거 같아서 저 점을 잡을 생각을 어케 햇는지를 잘 모르겠네요.
원래 풀이가 궁금해요
ㅋㅋㅋㅋㅋㅎ 넵 게시글로 올리겠습니다
그림도 대강 그려올게요
이거임뇨, 너무 ㅈ같이 풀어서 보여주기 부끄러울 정도네요 ㅇㅅㅇ..