Orbi지형T_[점수를높이는5M.Column] Ch1.등차수열'지형도를그리다'
게시글 주소: https://orbi.kr/00071309544
Orbi_Column_김지형T_수1(등차등비수열)_개념.pdf
[5-Minute Column]
"Major Past Math Questions
Reflecting Trends"
CH1 Arithmetic sequence
Column 1: 수1 등차수열 - 중요한 기출문제 풀이 함께하기
안녕하세요! 오늘은 수학 I의 등차수열을 다루는 중요한 기출문제 풀이를 함께 살펴보려 합니다. 잠시 시간을 내어 5분 정도만 읽어보시고, 풀이 과정을 하나하나 따라가 보세요. 그러면 이 문제가 얼마나 쉽게 느껴질 수 있는지 경험하실 수 있을 거예요.
아래 풀이 내용은 제가 대치동 현강에서 직접 강의한 내용을 바탕으로, 조교님께서 꼼꼼히 정리해 주신 자료입니다. 추가로, 첨부된 파일에는 강의에서 다뤘던 개념 설명도 상세히 정리되어 있으니 참고하시면 더욱 도움이 될 거예요.
특히 이번 강의에서는 4점 문항을 효과적으로 공략하는 방법에 집중했습니다. 여러 문제를 하나의 공통된 풀이 방식(알고리즘)으로 접근했는데요, 여러분도 이 방법을 빠르게 익히시면 등차수열 문제가 훨씬 쉽고 친숙하게 느껴질 거라 믿습니다.
제가 준비한 이 자료가 여러분의 실력 향상에 조금이나마 보탬이 되길 바랍니다. 함께 천천히 익혀가며, 더 큰 자신감을 가져보세요!
(1) 등차수열의 대칭성 활용 문항
작년인 2024년 기출문제에서는 찾아볼 수 없는 유형이지만, 등차수열의 대칭성은 반드시 알아두셔야 합니다. 이 개념은 문제를 푸는 데 중요한 단서를 제공하거든요.
저는 등차수열을 일차함수로 표현해 대칭성을 조금 더 간단하게 이해하고 해결하는 풀이 방식을 사용했습니다. 이 방법은 복잡한 계산을 줄이고 문제를 훨씬 직관적으로 접근할 수 있게 도와줍니다.
천천히 따라오시면서 이 풀이 방식을 익히시면, 등차수열 문제를 푸는 자신감이 더 커지실 거예요.
[2021년 9월 평가원 문항]
[2022년 4월 교육청 문항]
(2) 특정 항의 부호를 결정해야 할 때
최근 기출문제에서는 항의 부호를 나누어 생각해야 하는, 즉 케이스를 분류해야 하는 형태의 문제가 자주 출제되고 있습니다. 이런 유형은 앞으로도 출제 가능성이 상당히 높으니, 여러분께서 특히 집중적으로 학습하셔야 할 부분입니다.
이 문항들 역시 제가 사용하는 공통된 풀이법으로 접근할 수 있습니다. 등차수열을 직선으로 표현해 각 항을 구체적으로 나타내면, 케이스를 훨씬 더 명확하고 간단하게 분류할 수 있거든요.
여러분도 이 방법을 익히신다면, 어려운 문제도 한결 쉽게 느껴지실 겁니다. 함께 차근차근 풀어가며 감을 잡아보세요!
[2024년 3월 교육청 문항]
[2022년 6월 평가원 문항]
[2023년 7월 교육청 문항]
[2024년 5월 교육청 문항]
(3) 특정 항의 값에 집중해야 할 때
이 유형은 최근 기출문제에서 자주 볼 수 있는 유형이에요. 처음에는 계산이 복잡해 보일 수도 있지만, 걱정하지 않으셔도 됩니다. 절대 어렵지 않아요!
문제에서 특정 항의 특징이 제시되어 있다면, 우리는 그 항을 기준으로 계산을 변환하는 습관을 가지는 것이 중요합니다. 이렇게 접근하면 계산이 훨씬 간단해지고 문제 해결도 수월해질 거예요.
여러분도 이 방법을 익히시면 어렵다고 느껴지는 문제도 더 자신 있게 풀 수 있을 거라 믿습니다. 함께 차근차근 익혀보아요!
[2023년 9월 평가원 문항]
[2024년 7월 교육청 문항]
(4) 다양한 등차수열의 표현
이 외에도 다양한 방식으로 표현되는 등차수열을 익히는 것이 중요합니다. 이 부분은 개념서의 등차수열 표현 Part에 잘 정리되어 있으니 참고하시면 도움이 될 거예요.
등차수열을 빠르게 인식하고, 그에 따른 공차의 의미를 빠르게 해석하는 연습이 필요합니다. 이 능력이 갖춰지면 이런 유형의 문제도 훨씬 깔끔하게 해결하실 수 있을 거예요.
참고로, 이 유형은 작년 EBS 교재에서 굉장히 자주 다뤄졌던 만큼 출제 가능성도 높으니 꼭 꼼꼼히 학습해 보세요. 여러분이 더 큰 자신감을 가질 수 있도록 저도 함께 도와드리겠습니다!
[2023년 6월 평가원]
풀이법에 대한 질문이 있으시면 언제든 댓글로 남겨주세요! 여러분의 학습에 작은 도움이라도 드릴 수 있다면 정말 기쁠 거예요.
만약 이 칼럼이 유익하셨다면 좋아요를 눌러주시고, 앞으로도 꾸준히 업데이트되는 칼럼을 보시려면 팔로우 부탁드립니다!
이번 주에는 등비수열, 수열의 합, 수학적 귀납법을 차례대로 업로드할 예정이고요,
다음 주에는 수2의 함수의 극한, 함수의 연속, 미분계수와 도함수를 다룰 계획입니다.
혹시 더 다뤄줬으면 하는 주제가 있다면 댓글로 의견을 남겨주세요. 소중한 의견 참고해서 더 알찬 내용을 준비해보겠습니다. 개인적으로 궁금한 점이 있으시면 쪽지로 문의 주셔도 언제든 환영이에요!
참고로, 오르비 인강 촬영에서도 이 내용을 정리해 깔끔하게 강의해 업로드할 예정이니 기대해 주세요.
그럼 저는 또 열정 가득한 강의하러 떠나보겠습니다! 여러분, 오늘도 화이팅입니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
라떼는 4모였는데
-
86이엇는데 69로 떡락함; 공부좀덜햇다고 바로
-
한의대오지마라 35
의치대 가라 한의대 현실을 알려주겠다
-
식욕 미치겠네 5
하
-
참고로 저는 라떼입니다 아직 수학을 제대로 시작 못했어요 하지만 저건 문제집마다...
-
ㄹ데 지하철 거리 ㄹㅇ 실화냐 무슨 지하철 가면서 고속도로밖에 못본거같네
-
현역때도 69모 다 1 뜨다가 수능날 87 받음… 작수 풀어보니까 89나오던데 안정...
-
작수 생명 2등급인데 런함 이유는 개많지만 일단 큼직큼직한것만 말해봄 1. 고임...
-
재수생인데 3
이번 5모 확통 풀면서 딱히 걸리는거 없이 잘 풀었으면 당분간 확통 놓고 공통에만...
-
노력하면 갈수 있을까요
-
2026학년도 5월 모의고사 [10-13] 해설
-
빡모 패키지 0
사면 강의 무료라는데 사는게 맞겠지?
-
연대 영어 2등급이면 무조건 못간다 생각하는 사람들 많네 17
근데 난 감 8월부터 본 사설들 다 1이었어서 아깝긴했지만(그만큼 사설 성적은...
-
ㄹㅇ 줫빠지게 수학해야것다………
-
대 연 세 3
개맛있어보이누
-
혹시 담임컴텨에 누가 언제 어떤 전화번호로 통화했는지 나오나?
-
파본검사 때 비문학 소재, 문학 연계 훑어보는데 화작은 뭘 보면 좋을까요? 공통도...
-
배진짜고프다 0
야무지게 굶어야징
-
미적기준 92일것같은데. .
-
(조용히) 오르비 검색창에 덕코로 검색하고 10페이지까지 봤는데 덕코주세요가 뭘...
-
하....
-
이거 넘어가면 그냥 인강 들으면서 앉아있기 정도밖에 안됨..
-
망상속 계획은 매일 전과목 공부가 가능한데 세과목만 공부해도 하루가 다 감 국어...
-
미적분 수능 기준 컷이 얼마정도 일까요
-
확통기간 4
개념기출 끝내는데 얼마나 걸리나용 이쪽지역 미적 현역들은 개념기출만 딱 끝내고 수능보던데
-
Zola임당 8일 저녁에 교육청 시험에 대한 유툽 분석 영상 촬영을 했는데 [참고]...
-
호들갑떠는거같음
-
언어와 매체 88점 (비문학 -3 문학 -2) 미적분 88점 (공통 -1 미적분...
-
통통이 동료들아 3
아무리 그래도 20번 정답률 15퍼 21번 정답률 4퍼는 너무한거 아니니
-
운동 안하고 바로 스카갈라고 하면 뭔가 빈둥거리게 되는데 뛰고나서 스카갈라고 하면...
-
3모1에서 15
5모 저리 심하게 미끄러질수 있나 음 그래 그럴수 잇지...믿어
-
22 28 29 30틀 입니다 뭐해야할까요? 나름 n제좀 많이 풀었다고 생각했는데...
-
어려움? 너무 쉬운거 아니면 병원에서 검사 끝나고 러셀 복귀하면 풀어보게
-
결국 4반수 0
1달동안 달려서 6모 ㄱㄱ혓ㅋㅋ
-
평가원이나 교육청 공통은 웬만하면 다맞거나 실수나서 하나 삑나는 정도였고 풀어본...
-
스카가야겟지..
-
일단 개ㅅㅂ 홍보행위 아니냐 하겠지만 수익금은 싹다 기부할거(넥슨 푸르메 등...
-
따뜻해 0
방금 죽었나봐
-
수학 하방 0
상방은 1턱걸이 정도고 하방이 없는 수준인데 이땐 뭐하면 좋을까요??
-
까먹었어
-
덕코거지됨 9
ㅜㅜ
-
호잇호잇 2
쨔
-
수원지역이라 그런가 ㅅㅂ 그냥 장난으로 숨고에 내 이력 아주대 수논으로 들어간거...
-
두두 0
다다다
-
뻘글의 신 0
이 되고싶어
-
5모 수학... 0
12번 어럽다길래 쫄앗는데 스무스하게 풀리던데 ㅇㄴ 근데 13부터 계산 말림.. 왜지?
-
귀류적으로 a1 구해서 a1 부호 확정 a3에서 a5로 갈때 케이스가 4갠데 다...
-
30번은 기출에 비슷한거 많아서 머리 잘굴리면 풀리던데 29번은 읽자마자 케이스...
-
여의나루역 0
..
-
할말이없어 2
근데 글을 올리고싶은데 어떡하지
와아 첫 좋아요 감사합니다!!!! 잊지 않고 기억할께요오

유익한 칼럼이네요 팔로우하고갑니다~!오 감사합니다ㅎㅎㅎㅎ 더 필요하신거 있으실까요??
와 좋은 풀이네요
참고하겠습니다. 선생님 :)