미적 이 정도면 난이도 어느정도임?
게시글 주소: https://orbi.kr/00071234738

김기현 파데 미적 3주하고 킥오프로 복습하는데 개념할 때는 개쉬워서 별거 없는 줄 알았는데 유형서 오니까 대가리 깨질 거 같네 평소에 머리 나쁘다고 생각한 적은 없었는데..
사람들말로 이정도 책이면 기초라는데 이 문제가 노베 개넘으로 풀리는 문제냐? 한 70프로 접근하고 그 뒤에는 못 풀겠다 요즘들어 깨닫는다 빡대가리라는걸
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이수린 그거 인증한게 1월인가 그런데 아직까지 언급되네 ㅋㅋㅋㅋㅋ
-
저 명백히 특정.캡쳐한 글들 모았습니다
-
곧 휴 인 증 수린좌는 내 마음속 올타임 레전드임
-
너무먹져
-
교수님이 키스 샤디스인가
-
분위기를 바꾸는 20
간단한야메추(야식메뉴추천의준말ㅎ)부탁드려요
-
ㅉㅉ
-
오르비 여러분들도 어여 자세요 오늘은 새르비할 날이 아닌 거같어
-
ㄹㅇ 누구도 나를 이렇게까지 좋아하진않노 ㅋㅋ
-
책이나 강의가 아닌 다른거로 뜨면 본업을 잘한다고 볼 수 있나?
-
. 0
응 ㅇㅇ
-
허허허
-
진지하게 물리보다 어려워보이는데 나는 진짜 문과 체질이 아닌가보네
-
허허허 5
만약에 탈릅 당하면 위에 개인정보취급방침 안지킨걸로 생각하면 되나요 오르비 관계자님?
-
다른 재밌는 거 하면서 놀면되지 여기서 저러는게 재밌나
-
다른 때에는 애매해서 어느편도 못들었었는데 이건 걍 한명만 병신인거잖아ㅋㅋ 걍 같이...
-
교육청3모 42322 받았는데 현실적으로 어디까지 갈 수 있을까요 문과입니다… 국어...
-
또 저격메타임? 1
아이고
-
이번 3회차 2페부터 말려서 37맞고 (9,14,15,16,19) 장렬히 전사 ㅠㅠ...
-
여기서 잠시 쉬다 가셔요 밖이 좀 많이 살벌하네요 피자랑 치킨도 드세요
-
ㅈㄴ어려운데 ㅠㅠ
-
안양대 필통 잘못보고 한양대인줄 알았음 그래서 H가 왜 없나? 이랬는데 안양이었음
-
국어 문제집 0
방학동안 강은양 들으면서 국어 실력 확실히 오른 것 같았는데 삼모 결과가 너무 안...
-
나랑 놀자 4
-
왜냐면 이제부터 기다림이 24시간이 넘을 때마다대가리를 존나 쎄게 쳐서 제 머릿속을...
-
이번주 진도문항 본교재 91번 어떻게 푸나요
-
이거 풀면서 똑같다고 나만느낌? 3모전에 나온건데 뭐냐 ㅋㅋㅋㅋㅋㅋ
-
6모 60일 남았는데 난 한게 없는 것 같고 실력은 그대로인 것 같고 그냥그럼 불안해서잠이잘안옴
-
피해망상 오지네 33
댓글 달았더니 반가워서 "오 준x씨 오랜만" 이렇게 댓글로 장난 한번 쳤는데...
-
5일차 ㅇㅈ) 2
3,4일차의 행방은 물어보지 마십쇼...
-
신고 완료 4
동일 뱃지 신상인지 확인 부탁드렸음.
-
확통 한완수를 하다
-
씹덕 지듣노 9
-
낼아침 4시간 과외
-
야 9
야 그냥 불러봤어 ㅎㅇ
-
하 시발 ㅈ됐다 진짜로 어카냐 나 반수해야하나
-
이대 교대 외대 여기 세개는 수시 선호도 높고 정시 선호도는 낮은듯 먼가 신기함
-
안되겟지
-
나보다 점수높은사람 오셈
-
무한n수드가자 0
학교통 개심해서 못견디겠음
-
파동끄읕 1
이제 전반사!
-
오야스미 7
코낸코내
-
진짠데.
-
내신 생명 2
서술형이 50%던데 그냥 달달 외워야 하려나요..?
-
한종철쌤 철두철미로 개념 돌렸는데 유전때문에 홍준용쌤 커리 탈려고합니다.. 개념서...
-
취미가 꽃꽂이라 하면 어떨 것 같나요?
-
미적분 빼고 하등 쓸데 없음 화학 물리 선택자 일반물리 일반화학 정도
-
메인 점령이야~ 0
다 합쳐서 좋아요 450개!!!
26번 정도
26 27 사이
ㅇㅇ
어려운 3점
학평에서는 저것보다 쉬운 4점 봤어요
27 or 29
기출에 비슷한거있지않나?
29번같은데;; 또나만어렵지
29급이긴한데 내가 어렵게 푼건가
개념 이후 단계에서 갑자기 어렵데 느끼신 건
아마 이 문제의 핵심이 급수 개념이라기보다 이차방정식의 실근에 있어서 그런 것 같아요!
이차방정식의 실근이요? 혹시 어떻게 푸셨는지 여쭤봐도 될까용
주어진 곡선의 방정식은 이차식이므로 이 곡선과 직선의 교점을 구하는 방정식은 2차방정식입니다.
따라서
어느 한 교점의 좌표가 주어졌을 때(A_n)
나머지 하나의 교점의 좌표를 구하는 것(A_n+1)
은
이차방정식의 어느 한 실근이 주어졌을 때
나머지 하나의 실근을 구하는 것
과 같고,
이는 이차방정식의 근과 계수와의 관계라는 개념을 끌고 왔을 때 가장 간결한 풀이를 낼 수 있게 해줍니다.
여기까지를 풀이의 전반부라고 합시다.
그러면 후반부는 선분의 길이를 n에 대한 식으로 나타내는 것이겠죠.
저의 의견:
1.
전반부의 결론을 내리기만 하면
후반부는 특별한 사고과정이 필요없다.
(두 점의 좌표가 주어졌을 때 선분의 길이를 작성하는 과정일 뿐이므로)
따라서 전반부를 쉽다고 인식한다면 이 문제가 쉽게 느껴질 것이고, 어렵다고 인식하면 이 문제가 어렵게 느껴질 것이다.
위 답글에서 보였다시피 전반부를 쉽게 해주는 것은 이차방정식의 구조를 인식하고 이차방정식의 근계관을 적용하는 것이다.
2.
심지어 후반부의 계산을 짧게 해주는 데에도 근계관을 이용할 수 있다.
두 점은 모두 곡선 y=x^2 위의 점이므로
두 점의 x좌표의 합과 차만 얻는다면
선분의 길이를 구하는 과정이 편해질 것이다.
곧, 풀이의 전반부는 물론 후반부까지
이차방정식의 실근을 다루는 경험이 다분하다면 쉽게 접근하고 작성할 수 있는 것이다.