함수추론 자작문제
게시글 주소: https://orbi.kr/00070662243
계산은 많지 않지만 생각을 많이 해봐야 하는 문제 같습니다 개형만 찾으면 답은 바로 쓸 수 있으니 편하게 풀어보시면 좋을 것 같습니다 의도한 난이도는 22번 정도
(+)오류 있습니다..ㅠ 아래 조건을 추가해서 풀어주세요 죄송합니다
(나) (단, 두 실수 t1, t2는 -2도 아니고 2도 아니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나아지려고 자기관리 가능한 여건 내에서 하나씩 하고 있는데 자기관리 하게된다는...
-
지금까지 안잠 3
아니 사실상 못잠 코딩과제 좀 뭣같아서
-
뭘 처먹고 나니까 소화되기 전까지 잠을 못자겠네...
-
그리고 잠이 오지 않는다면 자지 않는다 패턴이 아주 멸망햇군
-
새르비언 0
잘자용
-
에후 4
재미가 하나도 없농
-
이래야 스트레스를 안 받을것같아
-
자신이 없다. 3
시험을 못 칠 자신이
-
보르코딜로포르콸라 에르 코ㅓㄹ로미로 포퓨ㅢ토크ㅏㅗ루저오사주스기미자으
-
사반수해볼까 0
시험 공부하다 현타오고 갑자기 든 생각 여기도 오랜만이네요
-
정운오 딱대 0
학교에 새로 생긴 건물인데 짱좋음요
-
정말 무서운건 1
오전 시험이 영어고 오후 시험이 생명인데 나는 생명 ppt만 보고잇다는것임
-
내일 시험인데 공부하나도안함... 유급당하는거아니겠지 출석과제는 다하는데
-
오늘 ㅇㅈ 5
-
본애니 9
별로없음 + 원펀맨 암살교실 프리렌 보는중인건 소녀종말여행 아베무지카...
-
하나 4
하나무브링 크카캌ㅋ
-
근데 왜 내 닉 4
제 닉은 무브링인데 왜 다들 브링이라고 하시는 거조
-
맞추면 5000덕 왈왈
-
왈왈 아르를ㄹ르르르르 왈 크크킁아앙
-
ㅇㅇ
-
빛에대한 공상 0
빛이 방구를 뀐다면 어캐될까 방구를 뀌엇어도 방구도 빛의 속도이므로 (빛의 방구라서...
-
혼자가면 뭐함 메이드 카페나 조질까 모에모에뀽~~
-
심심해 1
-
학교를 안가면 된다는 사실
-
가령 트럼프도 내 여친임
-
엄두가안나네
-
난 24시간도 못 버티고 중간에 쓰러짐
-
난 라멘집가면 밥주면 바로 거기 앉아버림
-
이화 간호학과목푠데 3모 141받음(사탐 공부안함..) 논술도 볼거라서 목표하는...
-
레제 vs 아사는 아사같은데 마키마 vs 요루는 역시 마키마인가 근데 마키마 고르면...
-
놀면 안되는데 일단 놀고 보는 깡 정도나 생길 수 있는거임
-
모두 굿밤 3
좋은 밤 되세요 너무 늦게 자서 후회하지 마시고
-
저능대결 3
여러분이 승자입니다 감사합니다^^ ㅈㅅ농담임
-
저능대결 7
요즘 자꾸 깜빡하고 팬티 입고 다님
-
저능대결 4
내가 이김
-
실모 배틀하면 누가 이길거 같음?
-
저능대결 0
22살까지 청담어학원 보면서 청담어는 무슨 언어일까 라는 생각을 하곤함 아마...
-
노래추천 2
-
노라조 이혁 7
잘생긴거임?
-
무려 5cm정도임
-
ㅋㅋㅋ
-
예체능이고 반수생입니다 체대인데 좀 높은 학교를 원해서 반수하려고해요 작수 성적은...
-
YAHO 3
예후
-
횽아들 잘쟝ㅅ 4
난잘거지렁
-
흐어어어어ㅓ어엉
-
하이샵님 Goat 10
전글 애니 이름 찾아주심..
-
고등학교였다면 절대 불가능했을 풍경인데 그 짧은 시간만에 이렇게 상황이 손바닥뒤집듯...
-
아쉬운 거지 5
-
평소에 공부 안 했으면 12
시험 직전에라도 안 자고 해야되는데 그냥 자고싶음 걍 ㅂㅅ인듯
-
나뮈키엔 자주관악 나와있긴한데 설대생이 자주~관악!!! 이러는거 못봄 우린 통일연세...
개어렵네 ㄷㄷ
안어려워용..
옹 이건 풀어봐야지 잠만녀
제발 풀이좀 알려주세요ㅜㅜ
오류가 있어서 죄송합니다..ㅠ 확인하시고 다시 풀어보실래요?
크악..ㅜㅜ
현역이신가요?
올해 수능 쳤습니다!
오,,,그렇군요
수학 양식 같은 거 완벽하게 숙지하신 게 신기하네요

워낙 좋아하다보니 그런 것 같습니다 :)문항 제작 많이 연습해 두세요! 조만간 제안 하나를 드릴 수도 있을 것 같아요
오우 말씀만으로도 감사합니다 :) 언제든 맡겨주십쇼!
아 문제 잘못봤네요 죄송합니다!
이거 정답개형이 뭐죠...?
234 맞나요?
아니네요 흠
오류 수정한 것에 따르면 맞습니다! 제가 의도한 답은 이거에요..ㅠ
아 -2가 비어서 다시 푸는데 그걸 빼야 했군요

좋은 문제 감사합니다아닙니다.. 시간 낭비하게 해서 너무 죄송합니다ㅠ 부족한 문제 풀어주셔서 감사합니다!
1. g(x) 좌우극한 다르려면 그지점에서 f(x)와 x의 대소 바뀌어야함 and f(x)와 x의 대소가 바뀌면 x가 0이 아닐때 g(x) 좌우극한 다름 -> 'x가 0이 아닐때 g(x) 극한 not 존재'와 '0이 아닌 x에서 f(x)의 대소변화'는 서로 필요충분조건, 따라서 x=0을 제외한 f(x)에서 x=4에서만 대소변화
2. f(x)-x는 사차함수이므로 부호변화가 짝수개 있어야함 -> x=0에서도 f(x)와 x 대소변화 (x=0과 x=4에서만 f(x)와 x의 대소변화)
3. f(x)의 최고차항 계수가 양수일 때: 0 f(2)<0
4. h(inf)=2이므로 h(x)<3
5. f(2)<0이고 f(4)=4이므로 20 인 x 존재 and 같은 논리로 f(0)=0이므로 0 0(+) 지점 존재 = f(x) 극소 존재
6. 이 극솟값이 양수면 같은 논리로 다른 극솟값 또 존재 -> 극소의 개수는 유한하므로 음의 극솟값 존재
7. g(x)=-f(x) (0 이 양의 극댓값을 c라고 하면, g(-inf)=inf고 g(0)=0이므로 g(x)=c인 x<0 존재, 따라서 lim x->c- h(x) >=3 -> 모순 -> 따라서 f(x)의 최고차항 계수는 음수
8. f(x)의 최고차항 계수가 음수: 0x>0이고 반대로 x<0, x>4에서 g(x)=-f(x)
9. g(0)=0이고 g(4)=4이므로 04에서 f(x)=0인 x 존재 -> 이 x를 a라고 하면 g(a)=0이고 g(inf)=inf이므로 x>a에서 g(x)=c인 x 존재
11. 따라서 g(x)=c의 실근은 최소 3개이므로 h(c)>=3 -> 모순
12. f(x)의 최고차항 계수를 양수라고 가정해도 모순, 음수라고 가정해도 모순
아 기껏 타이핑했는데 텍스트 깨졌네...
맞나요!!
맞습니다! 저 문제 자체는 모순입니다.. 오류 수정했는데 다시 한번 풀어봐주실래요 죄송합니다..
제발정답좀요 ㅠㅠ 못자겠어요
오류 확인하셨나요?
넵..
그래프 개형입니다!
아 저렇게 g(2)만 톡 튀어나와 있으면 되는구나..ㅠㅠ 위로 볼록이 생기면 안되는데 g(2)>0이려면 f(2)<0이고 그럼 위로 볼록이 무조건 생기는데??? 로 계속 헤맸어요 수능 공부할때도 이런거에 취약했던... 그래서 뭔가 y=x에 한번 접하지않을까 생각했는데 저걸 안해봤네요
저런 디테일 찾는 게 쉽지는 않죠 ㅠ 풀어주셔서 감사합니다!
ㅋㅋㅋㅋㅋㅋ제가 죄송합니다ㅜㅜ
중근갖는걸 생각못해서 한참 해맸네요
닫힌부등호인지 열린부등호인지 잘봐야하는데 감다떨어졋네
조건 자체에 모순이 있기도 했으니.. 더 힘드셨을 것 같습니다 모순 찾으신거 다 적어주시고 정말 감사합니다!
f(x) = 1/16 x(x-2)²(x-4)+x
f(-6) = 234