미적분러라면 이 정도는
게시글 주소: https://orbi.kr/00070627172
저번 수능 20번 문제 기억하시나요.
딱히 해석할 필요 없이 그냥 대입 잘 하면 풀리는 문제였습니다.
하지만 그 문제에
기하적인 해석을 곁들여서 이해할 수 있으면 좋을 것 같아요.
그런 느낌의 해석이 이전 수능에 나오기도 했구요. (2022수능 30번인데, 밑에서 보여드릴게요.)
일단 작수 20번 문제 읽어보겠습니다.
그려보면,
이런 상황이네요.
다음 부분 보겠습니다.
일단 x>k 인 부분은 그냥 알려줬어요. 그럼 궁금한 건 x<k 부분이죠.
일단 얘를 통해 x<k인 부분의 정보를 알 수 있다고 느껴야 합니다.
함수가 막 합성돼있다고 쫄 필요 없어요. 차근차근 보면 됩니다.
일단 우리가 f(x)에 대해 아는 게 x>k니까
k보다 큰 x를 저기에 대입한다고 생각해볼게요.
x>k일 때,
f(x)는 0 ~ k 의 함숫값을 가집니다.
즉...
0 ~ k 의 어떤 수를 다시 f(x)에 넣었을 때의 얘기를 하는 중인겁니다.
그러니까 식을 통해 이 노란색 영역에서 f(x)가 어떻게 생겨먹었는지를 알 수 있는거죠.
이제 기하적인 해석을 시작해보겠습니다.
우선 식을 변형해줍니다.
아까도 말했지만 x>k에서만 관찰해줄 겁니다. 그 뜻은,
우변에 결과물은 k보다 큰 값이 나온다는거네요.
그나저나 이 식 약간 역함수가 연상되지 않나요?
잘 안 보인다면
이렇게 g(x)를 정의하고 다시 볼게요.
즉
밑에꺼 보면 확실히 보이죠.
f(x)와 f(x) /3이 역함수 관계에 있다는 건,
f(x)를 y=x에 대해 대칭시킨 뒤에 3배를 하면 다시 f(x)가 나온다
는 뜻입니다.
여기가 조금 어렵죠? 지금 생각할 게 좀 많아요.
제가 가독성을 위해 범위를 빼고 러프하게 말했지만, 범위도 고려해야 해요.
냅다 f(x)와 f(x)/3가 역함수인건 아니니까요.
잠시 멈춰서 생각을 하다가 넘어가보세요.
여기가 핵심입니다.
충분히 고민해보셨나요? 이제 같이 보겠습니다
이게 우리가 아는 f(x)구요,
x>k 구간의 f(x)를 y=x에 대해 대칭시켜주면
이렇게 됩니다. 이제 여기에 3배를 해주면
모든 함숫값이 3배가 됩니다.
지금 나온 연두색이 바로 0~k 구간의 f(x)에요.
f(x)의 x>k 구간과,
f(x)/3 함수의 0<x<k 구간이
역함수로 대응되는 구간입니다.
이제 남은 건 계산입니다.
k가 뭐였냐면
얘였습니다. 조금 정리해서,
이걸 뽑아낼 수 있겠죠.
문제에서 물어본거랑 비슷하게 생겼네요.
양변을 세제곱해주면 문제에서 물어본 복잡한 저거가
실은 얘였다는 걸 알 수 있겠죠.
지금 x자리에다가
얘 넣으면 함숫값 뭔지가 궁금한거에요.
이제 그림으로 돌아가볼게요.
일단 저기가 12인게 보여야 해요. 왜 12냐면
얘를 뒤집어준거니까요.
x-3=9, 즉 x=12
근데 구해야하는 건 12가 아니죠
그거 3배해줘야 합니다. 뒤집고 3배라고 했으니까요.
답은 36입니다.
저는 사실 문제를 처음 봤을 때 딱 이렇게 풀었습니다.
그냥 대입 몇 번 하면 나온다는 건 다른 분들한테 듣고 나서야 알았어요.
조금 허망했던 기억이 있네요..
그나저나 식을 이렇게 인식하는 건 종종 쓰이죠. 특히 미적분러라면 더 그럴 겁니다.
중요한 건 f(x)를 기준으로 서술하는 것입니다.
"f(x)를 뒤집고 3배하면 다시 f(x)가 나온다!" 처럼
f(x) 기준으로 서술해야 안 헷갈려요.
관련 문제 하나 던져드리고 글을 마치겠습니다.
심심하면 풀어보세요
(출처: 2021 시행 대수능 미적분 30번)
그냥 계산하지 마시고, 제가 보여드린 것처럼
이 부분을 기하적으로 인식하면서 해보세요.
더 좋은 글로 또 찾아뵙겠습니다.
좋아요 눌러주고 가주세요 ㅎㅎ
#무민
0 XDK (+10,000)
-
10,000
-
오늘 산거 10
냄새 ㅆㅅㅌㅊ
-
우우
-
자라고 욕해줘요 9
왜안잠 얘
-
라면추천좀 10
ㅈㄱㄴ 진짬뽕굴진짬뽕스낵면참깨라면진라면 너무많이먹어서 다른거 먹고싶어요
-
잇올 업키 3
성적 한 과목이라도 오르면 해주는거에요?
-
메인 무슨일임 6
왜 저분은 저격당한거죠
-
2028부터 삼각함수 덧셈정리는 간접범위에도 없음? 3
삼각함수 덧셈정리는 만국 공통으로 고딩때 배우고 들어온다고 가정해서 대학교재...
-
3합 6이상인 대학 지원할거고, 과탐1개 반영대학 지원할예정이어서요 수학...
-
오늘도 0
찬우쌤 강의 듣고 마무리 문학 공부까지 해서 너무 좋다. 찬우쌤 사랑해요. 심찬우
-
쇼츠로 보는데 꿀잼
-
국수영탐 백분위 85 94 2 96 91
-
정시가 바늘구멍 된다는건지 아니면 진짜 없어진다는 것인지?
-
무슨 말을 못하겠다 ㄹㅇ ㅋㅋㅋㅋ
-
수학적 살인 2
수학적... 아 이거 선넘네 자제해야지
-
70 80 3 65 78
-
스트레스 너무받는다 15
속이답답하다
-
배우 차은우 [인스타그램] [헤럴드경제=이명수 기자] 배우 차은우(28)가 올해...
-
마침표가 존나 웃기노
-
리듬 농구의 익스텐션 모의고사 현장 응시 미분당해서찢겨버림
-
근데 저 글에서 3
“수학으로 살.인하겠습니다” 이 멘트가 왤케 웃기지 ㅅㅂ ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ...
-
전문직이니까. . 7급 수의사될수도있고 개원도할수있고 동물원에서 일할수도있고...
-
새벽에 세특써야겠다… 공부시간을 더이상 빼았기고싶지 않아여
-
나도 재릅인데 10
아무도 못 알아봄
-
성공한거임?
-
살좀빼야겟다 0
재수하고6키로가찐ㅋㅋ
-
4규 2
4규기하 유빈왜 없냐
-
많은 사람들이 과조건이 있는 문제는 퀄리티가 떨어진다고 생각해요. 하지만 생명1에는...
-
나 탈릅하면 4
굿다이노로 도배될듯
-
페도님의 장례식입니다 10
항상 핸복하세요..
-
담임쌤한테 앞으로 조회끝나고 무단조퇴 하겠다고 허락 맡아볼까요 자퇴는 좀...
-
굿다이노 2
좋은공룡
-
개고렙
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ...
-
부럽다
-
ㄹㅇ 안 오는거 같으니까 진짜 잔다 잔다 잔다
-
그때보다 실력이 늘었네
-
ㅅㅂ 20일만에 거의 한바퀴 돌려야겠네 ㅈ됐다
-
1510261 1
2113790 2083557 2164066
-
오 뭔가 수렴됨 2
고2때까지만해도 내신보다 모고가 더 잘나와서 (내신 국수44 모고32등급) 정시로...
-
오랜만에 해서 까먹었는데 이게 p2구할때 10분의 7이아니라 왜 8분의 7곱하는건가여..
-
수학질문 4
모의고사를 보면 항상 노찍맞 3,4점 한문제 차이로 2등급 안되는 3등급인데요.....
-
국어 수학(미적또는 기하) 영어 과탐(1) 3합 5가 최대목표이고, 3합 6은 꼭...
-
맞팔구 3
-
언니-동생이 동문이 되어버리는 아주 유링게슝한 상황이 되네요.
-
허구한 날 쓸데없는 걸로 싸우는 것보다는 낫네요
-
으악
-
의도적이지 않게 0
250630 복습하게 됐으면 ㄱㅊ ㅋㅋ
-
언미 고정1 영어 1~2진동인 무휴반엔수생인데요 나이가 많아서 올해 못 가면...
-
공뷰 2
지금부터 두시까지 할건데 무슨 과목 할까여 ㅎㅎ 힘들당
-
수행 대충 끝 0
머시기 설문조사 만들어서 뿌려버림 후련띠

1빠항상 잘 보고 있어요 좋은 글 감사합니다
미적분안했는데 이렇게 풀엇으면 ㅁㅌㅊ인가요
칭찬좀

미적 안했는데도 한거면 해석 능력이랑 역함수에 대한 이해가 진짜 뛰어나시네요수학상하 때도 열심히 하신듯요
저는 그래서 24수능 28하고 비슷하다고 생각하면서 풀었었네요..(근데 틀림 ㅜㅜ)

맞아요 확대축소는 241128이랑 똑같죠우악 토나와

오랜만이네요 약연님오랜만이에요 :)
칼럼 잘 읽고 갑니다..! (0,k)에서 그냥 적절한 임의의 함수가 있겠지..하고 넘어갔는데 이런 방법으로 구해볼 수도 있었군요!
선생님 덕에 새롭게 배워가고 갑니다

답을 낼 때는 대입해서 풀었지만 현장에서 20번 처음 봤을 때가장 먼저 시도했었던 방법이네요 ㅋㅋ
확대축소 안 하고 바로 치환 때려도 나오는 거 같아유.
차피 f(x) (k<x) 는 일대일 대응이니깐 바로 역함수로
저도 역함수로 풀었는데 10분 잡아먹은것 같네요 ㅋㅋㅜ
ㄷㄷ..
저렇게 풀고 으쓱하다가
대입 풀이보고...ㅋㅋ
아니 요즘 수학 진짜 어렵네 ㅋㅋㅋㅋ
시간 ㅈㄴ 박아서 역함수로 풀었는데 대입 딸깍의 허망함은
나랑 똑같이 했네
저 방식으로 풀려하면서 k값을 정리할 때쯤 종이 쳐서 못풀었습니다 ㅠㅠ 5분만 더 줬으면 풀었을텐데
저도 막히고 나서 이방식으로 풀었는데 ㅋㅋ
풀이보고 허탈했음ㅋㅋㅋㅋ