[수학] 20번이 신유형이라고?
게시글 주소: https://orbi.kr/00070170392
안녕하세요
오르비 수학강사 이대은입니다.
2025학년도 수능이 끝나고
첫 글인 것 같네요.
이 글은 25학년도 수험생보단
26학년도 수험생에게 더 도움이 될 거예요!
이번 수능 정말 애매합니다.
등급컷에 대한 이야기도 모두 다르고,
그래서 난이도가 쉽다는 건가
어렵다는 건가
애매하죠.
아마 내년 수능을 준비하는 학생 입장에선
많이 난해함을 겪지 않을까란 생각을 합니다.
오늘의 글 주제는
2025학년도 수능 20번처럼
신유형이 등장했을 때를 대비하는 방법
에 대하여 글을 적어볼까 합니다!
1. 사실 신유형은 없다.
자극적으로 부제목을 정하긴 했으나
저는 수업할 때
이 세상에 신유형은 존재하지 않는다.
라는 말을 정말 많이 합니다.
결론부터 말씀드리면
우리가 느끼는 신유형이라는 문제들은
기존에 존재하던 유형들의 조합이 새로울 뿐
과거에 없던 유형이 등장한 건 아닙니다.
이번 2025학년도 수능 20번을 통해 위의 말을 이해해봅시다.
이번 시험지에서 가장 신유형이라고
평가받는 문항입니다.
이 문제가 신유형이라고 평가받는 이유 중 가장 큰 이유는
문제에서 요구하는 k값을 구하지 않고
풀어야 하기 때문입니다.
최종값에서 괄호 안의 값을
함숫값으로 나타내고 조건에 주어진 항등식 관계를 이용해야 답이 나옵니다.
이와 같이 미지수를 구하지 않고
문제에서 요구하는 최종값을 직접 구하는 문제는 이번이 처음이 아닙니다.
제가 기출분석 강좌 선에서 강조했던 문제 중 한 문제인
아래의 15년 10월 교육청 나형17번을 보시면
마찬가지로 a를 구하지 않고
직접 최종값을 구하는 문제입니다.
완전한 풀이를 설명하진 않겠지만
이 문제는 삼각형의 넓이를 a로 나타냈을 때
와 같은 식이 등장하며 a의 값을 몰라도
답을 구할 수 있게 됩니다.
15년 문제가 도형을 이용한 문제로
삼각형의 넓이를 문자 a를 이용하여 나타낸 식의 형태에서
최종값을 끌어내는 문제라면
25학년도 수능 20번은 항등식을 이용한 문제로
문제에 주어진 함수와 항등식의 형태를 이용해
최종값을 끌어내는 문제 입니다.
도형과 항등식은 누구나 알 수 있는 큰 유형이므로
25학년도 수능 20번은 완전한 신유형이 아님을 알 수 있습니다.
물론 지금 이 문제는
최대한 한 문제와 억지로 유사함을 끌어냈지만
보통의 경우 여러 문항들에 들어 있는 각각의 유형들을 이용해
한 문제가 만들어지는 경우를 따져보면
훨씬 더 유사함을 보인다는 것을 알 수 있습니다.
2. 너무 결과론적인거 아니냐,,?
억지라고 느껴질 수 있습니다.
하지만 이런식으로 기출문제를 접근하지 않는다면
즉, 과거에 경험한 문제들을 이용해 수능에서 도움을 받을 의지가 없다면
우리는 왜 기출문제를 중요시해야 하나요?
여기서부터가 핵심입니다.
이미 존재하는 유형이다.
라고 말하고 글을 끝내면 아무 의미가 없죠.
결국 모든 시험지에 등장할
이런 문제들을 대비하기 위하여
과연 어떤 공부를 해야 하는가
라는 고민을 해야 합니다.
물론 우리가 10문제의 기출문제를 공부하고
여기서 4-5개의 문제가 수능에 나오는 게 아닙니다.
몇 백, 몇 천 개의 기출문제를 공부하고
이 중에서 30문제가 나오는 것이죠.
심지어 4점 문항만 고려하면
13문제가 나오게 됩니다.
따라서 우리는
기출문제를 얼마나 어떤 문제를 푸느냐
보다
기출문제를 어떤 방식으로 학습하느냐
가 훨씬 더 중요합니다.
나중에 칼럼으로 한 번 자세히 소개하겠지만
가장 올바른 방식을 한 줄로 정의하면
최대한 상세히 유형을 구분하고, 구분한 유형별 풀이법을 완전히 암기하는 것
입니다.
예를 들어,
위에 25학년도 수능 20번을 기출분석에서 다룬다고 했을 때
다음과 같이 정리할 수 있습니다.
만약 지금처럼 모든 기출문제를
꼼꼼하게 정리하고 암기했을 때
결국 신유형에 대한 대비는 생각보다
뻔하고 쉬운 방법을 통해 할 수 있는 것이죠.
이건 신유형에 대한 대비 뿐만이 아니라
수학공부에서 특히 기출분석에서 가장 중요한 방향성
입니다.
*자세한 문항 설명이 필요한 분들은 아래 영상을 참고하세요.
오늘 글은 여기까지입니다.
사실 내용을 깊게 적으려다
수능이 끝난지도 얼마 지나지 않았고,
내년 수험생 분들은
아직 기말고사 대비로 바쁠 것 같아서
맛보기 느낌으로 간략하게 적었습니다.
곧 상세하게 적은 글로 돌아올게요.
25수험생 분들은 정말 고생 많으셨고
26수험생 분들은 저와 같이 내년에 파이팅합시다.
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 증가
현) 매시브학원 대치, 경복궁, 분당
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
공식:(전년 수능 응시자수)*(올해 수특 판매 비율/전년 수특 판매 비율)*1.1...
-
미적분 합성함수 2
그래프 못그려도되겠죠?
-
해설과 강의를 안보고 문제와 나 사이의 야차룰을 뜨는 사람이어야 함
-
지금 일클 연필통 원데이 풀고 마더텅 문학 독서 각각3지문 푼다음 영어는 조정식쌤...
-
모든논리는 NAND로 표현가능 NAND는 수식으로 표현가능수식 Y = 1 - (A...
-
필쏘 굿!! 이네 Brilliant Move !!
-
아니 제발 한주에 한주치 올리라고 무슨 4주치가 한꺼번에 올라와 업로드 맞춰서...
-
'누텔라' 개발한 그 사람…밸런타인데이에 세상 떠났다 1
글로벌 인기 초콜릿 잼 '누텔라'를 개발한 프란체스코 리벨라가 밸런타인데이에...
-
103->70->35까지 왔는데 제발 ㅠㅠㅠ
-
전 그래서 그냥 안정카드를 8칸으로 잡았었음 떨어지기싫어서..
-
본인이 그러한 일에는 전문임
-
어그로 뫼송 강민철 솔직히 어떰?? 강평강평 거리던데
-
다 듣는게 낫겠져?ㅎㅎ
-
수분감으로 기출 돌리고 아이디어 책 선물 받은 게 있어서 이걸 빠르게 듣고...
-
뱃지 달렸나요 2
ㅇㅅㅇ
-
n은 10 미만의 자연수
-
탁탁탁 10
?
-
과탐 붙잡고 있다가 반수 실패 후 대학 계속 못 갈것같아서 올해 사탐런하고...
-
그렇게그렇게 페이스메이커 풀라고 했는데 개학 2주남은 지금까지 밀리고있고 올오카...
-
인가요?
-
육룡이 나르샤에서 권근하고 열혈사제 박대장이.... 같은 배우였다고??? 나 진짜...
-
생보지 7
근데 진짜 우영호T가 이렇게 쓸때 있어요
-
무려 4개
-
안녕하세요. 00년생이고, 현역 당시 나형 높은2 였습니다. 개인사정으로 대학 안...
-
ㅈㄱㄴ
-
아니 근데 어제 공부 13시간 20분은 어캐한거지 이게가능함? 해봤는데도 어캐했는지 모르겠음
-
안녕하세요, 경북대학교 새내기 여러분! 저는 경북대 컴퓨터학부 23학번입니다....
-
뭐다뇨?
-
넷상 평균학력 스카이 (진짜임)
-
ㅇㅇ..? 내가 잘 몰라서.. 주변에 정시 카이스트는 못들어봄
-
그립다 0
22 오르비
-
본인 초딩 때 문방구마다 100원 전자오락기 있었음 3
당연히 본인 포함 초딩들 그 앞으로 겜하러 하교 중 달려갓는데 이젠 겜기도 없고...
-
백분위/표점은 기억 안날수 있으니 깔끔하게 국수탐 원점수로 함
-
수학이 이해과목이라는 넘들은 지가 수학을 어떻게 푸는지에 대한 인지자체가 없다는거임
-
못생겻다 7
ㅋㅋ
-
뭐 내신 확대되고 등등 개편되면 내신 ㅈ박은 학생 혹은 자퇴나 검정고시생은 아예...
-
경희대 일본어 0
예비 몇번까지 붙었나요??
-
“미·러, 우크라 종전 위한 고위 협상팀 신속 구성 합의” 1
[서울경제] 미국과 러시아가 우크라이나 전쟁 종료 방안을 놓고 사우디아라비아에서...
-
인자 새르비 안한다 19
참이여 참이라니까
-
ㅇ?
-
알바하느라 이제봄뇨
-
덥네
-
뱃지 왔네요 4
뭔가 자랑스러워지는 느낌입니다.
-
중대 ICT 추합되어서 끄트머리면 전공선택할때 1지망 전전 선택해도 안되는건가요?...
-
아니 무슨 수능이 과거시험도 아니고 오픈북을 왜반대함 7
솔직히 뇌에 새겨진 알고리즘 기억빨로 치는거잖음 누구나 수능답지가 아닌이상 뭘...
-
학교 내신때문에 수능특강 강의 켰는데 미모가 ㄷㄷ 조정식 선생님 그동안 감사했습니다..
-
3등급…? ㅋㅋㅋㅋㅋㅋㅋㅋ
-
부경대 경상대 2
부경대 자율전공 경상대 영교, 경영 붙었는데 어디를 가야할까요.. 신설에 자전이라...
-
하.. 이제 진짜 성인이네
![](https://s3.orbi.kr/data/emoticons/orcon/020.png)
개추으흐흐
잘 읽었습니다 좋은 학습 자료 올려주셔서 감사드립니다
![](https://s3.orbi.kr/data/emoticons/rabong/022.png)
좋게 반응해주셔 고맙습니다'복잡한 형태의 최종값은, 개별로 구하지 못할수 있으며 set값으로써 구해야할때가있다.' 라 말씀하신거맞지요?? 이런 접근은 중학문제에서도 자주 나오더라구요 ㅎㅎ
오호 맞습니다! 뭔가 말씀하신 게 더 고급진 표현 같네요 :)
분야는 다르지만 좋은 글 잘 읽고 갑니다
![](https://s3.orbi.kr/data/emoticons/oribi/037.png)
넵 같이 파이팅해요!기출문제 열심히 풀어본 입장에서 미지수값 일일이 구하지 않고 최종값 얻어내는 형식 꽤 봤죠 예전 나형 30번인가? 알파베타 섞여있는문제, 22수능 13번 등등 당장 생각나는것 여러개 있네요
네네 맞아요
기출을 단순히 경험한다에 목적을 두지 않고 기출을 통해 지식을 학습한다고 생각하면 모든 시험지에 등장하는 문제들이 그다니 생소하게 느껴지는 것들은 많지 않을 거예요 :D
물론 킬러문항은 약간 논외지만요 ㅎㅎ
신유형×
낯설다o
맞죠 이렇게 보는 게 가장 맞는 표현입니다!
안풀려서 울뻔했어요...
괄호 안은 금방찾긴했는데
?->5^-9->함숫값
여기서 앞부분을 봐야되는데 뒷부분만 계속 보고있어서 5트함
ㅠㅠ 현장에서 한 번 안 보이면 찾기 힘들 것 같긴 해요,,
20번은 오히려 내신 준비하는 애들이 더 잘맞았을듯
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
인정내신대비 때는 정말 적은 단원을 엄청 푸니 아이디어가 겹칠 것 같네요
이게 맞다 연논 2023 가로등 문제도 처음 접했을때나 집합 표현이 낯선거지 신유형은 아님
오호,, 논란에 연논,,
수능 또한 아무래도 요즘 집합이 수험생들에게 깊게 안 느껴지다보니 조금만 어색해도 체감 난이도가 확 올라가는 부분이 있습니다. :D