[수학] 20번이 신유형이라고?
게시글 주소: https://orbi.kr/00070170392
안녕하세요
오르비 수학강사 이대은입니다.
2025학년도 수능이 끝나고
첫 글인 것 같네요.
이 글은 25학년도 수험생보단
26학년도 수험생에게 더 도움이 될 거예요!
이번 수능 정말 애매합니다.
등급컷에 대한 이야기도 모두 다르고,
그래서 난이도가 쉽다는 건가
어렵다는 건가
애매하죠.
아마 내년 수능을 준비하는 학생 입장에선
많이 난해함을 겪지 않을까란 생각을 합니다.
오늘의 글 주제는
2025학년도 수능 20번처럼
신유형이 등장했을 때를 대비하는 방법
에 대하여 글을 적어볼까 합니다!
1. 사실 신유형은 없다.
자극적으로 부제목을 정하긴 했으나
저는 수업할 때
이 세상에 신유형은 존재하지 않는다.
라는 말을 정말 많이 합니다.
결론부터 말씀드리면
우리가 느끼는 신유형이라는 문제들은
기존에 존재하던 유형들의 조합이 새로울 뿐
과거에 없던 유형이 등장한 건 아닙니다.
이번 2025학년도 수능 20번을 통해 위의 말을 이해해봅시다.
이번 시험지에서 가장 신유형이라고
평가받는 문항입니다.
이 문제가 신유형이라고 평가받는 이유 중 가장 큰 이유는
문제에서 요구하는 k값을 구하지 않고
풀어야 하기 때문입니다.
최종값에서 괄호 안의 값을
함숫값으로 나타내고 조건에 주어진 항등식 관계를 이용해야 답이 나옵니다.
이와 같이 미지수를 구하지 않고
문제에서 요구하는 최종값을 직접 구하는 문제는 이번이 처음이 아닙니다.
제가 기출분석 강좌 선에서 강조했던 문제 중 한 문제인
아래의 15년 10월 교육청 나형17번을 보시면
마찬가지로 a를 구하지 않고
직접 최종값을 구하는 문제입니다.
완전한 풀이를 설명하진 않겠지만
이 문제는 삼각형의 넓이를 a로 나타냈을 때
와 같은 식이 등장하며 a의 값을 몰라도
답을 구할 수 있게 됩니다.
15년 문제가 도형을 이용한 문제로
삼각형의 넓이를 문자 a를 이용하여 나타낸 식의 형태에서
최종값을 끌어내는 문제라면
25학년도 수능 20번은 항등식을 이용한 문제로
문제에 주어진 함수와 항등식의 형태를 이용해
최종값을 끌어내는 문제 입니다.
도형과 항등식은 누구나 알 수 있는 큰 유형이므로
25학년도 수능 20번은 완전한 신유형이 아님을 알 수 있습니다.
물론 지금 이 문제는
최대한 한 문제와 억지로 유사함을 끌어냈지만
보통의 경우 여러 문항들에 들어 있는 각각의 유형들을 이용해
한 문제가 만들어지는 경우를 따져보면
훨씬 더 유사함을 보인다는 것을 알 수 있습니다.
2. 너무 결과론적인거 아니냐,,?
억지라고 느껴질 수 있습니다.
하지만 이런식으로 기출문제를 접근하지 않는다면
즉, 과거에 경험한 문제들을 이용해 수능에서 도움을 받을 의지가 없다면
우리는 왜 기출문제를 중요시해야 하나요?
여기서부터가 핵심입니다.
이미 존재하는 유형이다.
라고 말하고 글을 끝내면 아무 의미가 없죠.
결국 모든 시험지에 등장할
이런 문제들을 대비하기 위하여
과연 어떤 공부를 해야 하는가
라는 고민을 해야 합니다.
물론 우리가 10문제의 기출문제를 공부하고
여기서 4-5개의 문제가 수능에 나오는 게 아닙니다.
몇 백, 몇 천 개의 기출문제를 공부하고
이 중에서 30문제가 나오는 것이죠.
심지어 4점 문항만 고려하면
13문제가 나오게 됩니다.
따라서 우리는
기출문제를 얼마나 어떤 문제를 푸느냐
보다
기출문제를 어떤 방식으로 학습하느냐
가 훨씬 더 중요합니다.
나중에 칼럼으로 한 번 자세히 소개하겠지만
가장 올바른 방식을 한 줄로 정의하면
최대한 상세히 유형을 구분하고, 구분한 유형별 풀이법을 완전히 암기하는 것
입니다.
예를 들어,
위에 25학년도 수능 20번을 기출분석에서 다룬다고 했을 때
다음과 같이 정리할 수 있습니다.
만약 지금처럼 모든 기출문제를
꼼꼼하게 정리하고 암기했을 때
결국 신유형에 대한 대비는 생각보다
뻔하고 쉬운 방법을 통해 할 수 있는 것이죠.
이건 신유형에 대한 대비 뿐만이 아니라
수학공부에서 특히 기출분석에서 가장 중요한 방향성
입니다.
*자세한 문항 설명이 필요한 분들은 아래 영상을 참고하세요.
오늘 글은 여기까지입니다.
사실 내용을 깊게 적으려다
수능이 끝난지도 얼마 지나지 않았고,
내년 수험생 분들은
아직 기말고사 대비로 바쁠 것 같아서
맛보기 느낌으로 간략하게 적었습니다.
곧 상세하게 적은 글로 돌아올게요.
25수험생 분들은 정말 고생 많으셨고
26수험생 분들은 저와 같이 내년에 파이팅합시다.
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 증가
현) 매시브학원 대치, 경복궁, 분당
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오르비언들 5
사랑해요 행복하세요
-
맞팔구 0
-
지금이니
-
자러가요
-
파면한다 당시 녹화해놨던거 무한재생중 도파민 지리네
-
좋아하는 생각하기
-
한쪽은 비 맞지 않나 사이좋게 붙으면 괜찮을려나
-
난 윤석열에 어느정도 기대를 하긴 했음 비록 선거과정에 좀 이상한 짓을 많이...
-
인생망한거같다 0
고1때부터 정시선언하고 나댔다가 학교 다니면서 우울증,대인기피 심해지고 수능은...
-
지금이라도 늦지 않았다 영혼까지 끌어 부동산 올인해야하는 이유 3
오늘이 최저점임 이재명은 합니다
-
이짤아는사람 6
.
-
한창 엔저때는 ㄹㅇ 나라전체가 거대한 블랙프라이데이였는데
-
언제 올리는게 가장 많이볼까요 수특 레벨3 곱셈정리까지+확통 필수...
-
神戸
-
오르비 1
-
그냥 노가다죠? 애들 대부분은 다 맞췄더라구요
-
내가 진짜 여자 겠음?
-
ㅈㄱㄴ? 윤 탄핵된 이시점에 의뱃분들 생각이 어떨까 궁금하네요
-
젼 기만자가 아니라 11
감자입니다
-
사실 얼굴 잘 못외워서 욕 많이먹음
-
정신의병
-
메가 칼럼에 재수해서 23242 받고 수시로 수의대가서 칼럼쓰는사람있던데 12
뭔가뭔가임 수시 준비하는 사람들한테는 도움되겠지만 정시한테는 도움 안되는데 하나하나...
-
다뒤진 오르비에 장작 넣어주는 리치킹인듯
-
으흥~
-
딥피드 점령당함 2
너가갤주해라
-
+1을 해야겠어
-
저때 인설의 이상급에서 수능보던 사람 내가 아는 케이스만 2-30개는 됐었는데...
-
다들 자러 가라
-
아차! 내란견들에게 뻐큐하는 형식이햄이었어요!
-
꼭 약속 전날밤에 뭐가 터짐
-
엄
-
공팀지수가 4임 ㅋㅋ 내가 취직하기전에 마지막기회같은데
-
아 인생
-
자러가겠습미다.. 12
자러가라고하네요ㅠ 거역할수가읎다
-
벌써부터 보이는건 기분탓일까
-
입학이 곧 처단대상인 학과인데 ㅉㅉ
-
처음엔 나도 좀 예쁜 레어 멋진 레어 가지고 싶었어 4
연달아서 여섯번 물리니깐 그냥 폭주한거지 정작 웃긴 건 물렸던 레어는 다 팔렸다는 거임
-
학교인증만 하고 탈퇴해야지
-
요즘으로 치면 서바 이감 기깔나게 푸는거로 어맛 저 낭군 멋져 이ㅈ랄하는거 아님?
-
개콘 공채 소속이냐? 19
둘이서 뭐하노 ㅋㅋㅋㅋㅋ 일단 이젠진짜 점마는 공연성은 성립해도 특정성 부터가...
-
신청 안되죠??ㅠ 8월에 고졸따는데 6평은 학원에서도 못 보는 거 맞나요? 혹시...
-
오늘 독재에서 귀차나서 안외운 영어단어..
-
레몬멜론쿠키레몬멜론쿠키 쿠키!
-
내년 현역은 잠재적 재수때문에 확통을 더 할거같다
-
탈릅해야지 4
ㅇㅇ
-
레어 구매 꿀팁 4
지금껏 스크롤로 찾았던 레어를 찾았던 지금까지의 내가 한심해질 정도의 좋은 방법이라...
-
친목안되는거 아는데 너무 외로워요……걍 밥만먹을친구 근데 다들 공부만함

개추으흐흐
잘 읽었습니다 좋은 학습 자료 올려주셔서 감사드립니다

좋게 반응해주셔 고맙습니다'복잡한 형태의 최종값은, 개별로 구하지 못할수 있으며 set값으로써 구해야할때가있다.' 라 말씀하신거맞지요?? 이런 접근은 중학문제에서도 자주 나오더라구요 ㅎㅎ
오호 맞습니다! 뭔가 말씀하신 게 더 고급진 표현 같네요 :)
분야는 다르지만 좋은 글 잘 읽고 갑니다

넵 같이 파이팅해요!기출문제 열심히 풀어본 입장에서 미지수값 일일이 구하지 않고 최종값 얻어내는 형식 꽤 봤죠 예전 나형 30번인가? 알파베타 섞여있는문제, 22수능 13번 등등 당장 생각나는것 여러개 있네요
네네 맞아요
기출을 단순히 경험한다에 목적을 두지 않고 기출을 통해 지식을 학습한다고 생각하면 모든 시험지에 등장하는 문제들이 그다니 생소하게 느껴지는 것들은 많지 않을 거예요 :D
물론 킬러문항은 약간 논외지만요 ㅎㅎ
신유형×
낯설다o
맞죠 이렇게 보는 게 가장 맞는 표현입니다!
안풀려서 울뻔했어요...
괄호 안은 금방찾긴했는데
?->5^-9->함숫값
여기서 앞부분을 봐야되는데 뒷부분만 계속 보고있어서 5트함
ㅠㅠ 현장에서 한 번 안 보이면 찾기 힘들 것 같긴 해요,,
20번은 오히려 내신 준비하는 애들이 더 잘맞았을듯

인정내신대비 때는 정말 적은 단원을 엄청 푸니 아이디어가 겹칠 것 같네요
이게 맞다 연논 2023 가로등 문제도 처음 접했을때나 집합 표현이 낯선거지 신유형은 아님
오호,, 논란에 연논,,
수능 또한 아무래도 요즘 집합이 수험생들에게 깊게 안 느껴지다보니 조금만 어색해도 체감 난이도가 확 올라가는 부분이 있습니다. :D