수2 극한
게시글 주소: https://orbi.kr/00069571999
n=1 ->극한값=0
n=2 ->극한값=0
n=3 ->극한값=2
n=4 ->극한값=6
여기서 왜 극한값이 0인 n=1,2를 먼저 생각하나요?
극한값이 0이면 인수의 개수가 f(x)>g(x)
극한값이 0이 아니면 인수의 개수가 f(x)=g(x) 니까,
n=3,4부터 생각할 수 없나요?
(n=1,2부터 생각하는 이유가 g(x)가 (x-1)을 인수로 가져서 n=1일때 극한값이 0이라 인수의 개수가 f(x)>g(x)를 만족해서 분자가 (x-1)^2을 가져서 그런가..?)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제가 직접 만든 문항 중 가장 어려웠던 것들, 풀어 보면 좋을 것들만 가려서...
-
쌩재수 한 번이랑 동치 ㅇㅈ?
-
두 번에도 뜻을 이루지 못하면 번민하고, 세 번에도 뜻을 이루지 못하면...
-
ㅈㄱㄴ
-
시즌 순서대로 부탁드립니다
-
g`(x)=f(x)-2x길래 조건 f(2)=4니까 g`(2)=0 이다라는걸 알았는데...
-
파이널 학원 추천해주실 수 있나요 ㅜㅜ 생각 중인건 ㅍㄹㅈㅇㄷ인데 학원을 잘...
-
트레일러는 시즌 1,2 합쳐서 40 넘는게 4회랑 9회뿐.. ㅠㅠ
-
이 라인 대학 1
국어 낮4 수학 높3 영어 3~4 사탐 중간3 과탐 낮3 대학 ㅇㄷ감 에리카 ㄱㄴ?
-
한참을 고민고민하다 답지봤다 이걸 시험장에서 어케풀어 난 틀릴래. 저능아라서 울엇어...
-
화작이랑 독서론때문에 강제로 25분컷했음....첫번째랑 인문은 다 맞았고 과학 하나...
-
수학 21번 쉬웟나요? 13
몇분들 걸리심? 저문제에만 마지막에 25분 넘게 꼬라박았는데 못품 x2가 -t+5...
-
부모님 지원은 절대 안받을거임 사실 올해도 안받다가 예산 초과해서 하반기부터는...
-
07 사탐런 4
물지에서 사문 지구로 바꿀려는데 아직은 시기상조인가..
-
체감해본적잇는사람 독서…ㅈㄴ미루다 지금까지와버려서 ㄹㅇebs아누것도안햇는데...
-
어쩌다 눈마주친거 << ㅇㅋ 길이 좁아서 안보면 부딪히니까 사람있는지 확인만 하는거...
34부터 해도 되는데 그러면 케이스 분류가 좀 빡셈. g(1)줬으니 관련된 부분 먼저 살피는게
앗
그렇군요..
제가 괄호에 설명한 내용은 맞나요!
감사합니다~
좀 늦었긴한데,
갑자기 궁금해서 질문 올립니다.
(가)조건에 의해서 g(x)는 x-1을 인수로 가지는데,
n=1일때, f(x),g(x)는 왜 x-1을 한개씩 더 가질 수 없나요? lim x->1이면 x-1을 인수로 가진다는 거 아닌가요? 그러면 f(x)=(x-1)(x^2+ax+b),g(x)=(x-1)^2(x+c)이고, 극한값이 0 이니까 인수의 개수는 f(x)>g(x)라서 f(x)=(x-1)^3 아닌가욥..? 풀다보니까 이건 왜 생각을 못했지 라는 부분이 존재해서...
맞아요 케이스 분류(인수개수 2개 3개)할 수도 있는데 n에 2박으면 바로 모순임이 증명되는 케이스라 수학문제 좀 풀어본 사람이면 잠깐 떠올랐다가 바로 기각되는 케이스라고 보시면 돼요.
n=2를 가정하기전에, n=1먼저 생각하면 위에꺼처럼 f(x)=(x-1)^3이 나오는데 이때는 어떡하나요?
인수 하나보단 인수 2개를 알고 f 함수 미지수 줄여서 극한값 께산하는게 더 빠르죠
감사합니다!!
n=1일 때, fx는 x-1을 2개 또는 3개 가지는데 이걸 확정할 수는 없어서 다른 조건으로 하나의 케이스가 모순임을 밝혀야 해요.
n=2 대입하면, 극한이 0으로 수렴해서 fx가 x-1을 3개 가질 수 없어(f2가 0이 되어야 해서) fx는 x-1을 두 개 갖는 것이죠
아 그러면
제가 유추한 생각에는
g(x)는 (가)조건에 의해서 x-1를 인수로 가지는 상태인데,
n=1인 경우를 생각해보면 어짜피 분모g(x)가 x-1를 인수로 가지니까 분자f(x)만 생각해주는건가요?
그쵸.
0/0꼴 극한의 값이 0으로 수렴하려면 분모보다 분자의 인수의 개수가 많기만 하면 돼서
gx가 인수 1개는 문제 조건에 의해 확정이므로
n=1일 때,
1=<g의 인수 개수<f의 인수 개수=<3
라고 조건을 정리할 수 있어요.
이를 바탕으로 fx의 식을 구성하려 하면
g의 인수의 개수도 모르고 부등호가 가지는 의미 때문에 g의 인수 개수는 1 또는 2이고 각 경우를 살피면,
g의 인수의 개수가 1일 때 f는 2개 또는 3개
g가 2개일 때 f는 3개
이렇게 3가지 경우가 나오게 된답니다.
말씀하신 fx가 x-1을 3개 가지는 경우도 그 중 하나이고요!
조건이 많이 확보될수록 케이스가 줄어든다는 점도 참고해서 슬기롭게 문제를 푸시길!

도움 많이 됐습니다 ㅎㅎ감사합니다!!