극값에서 미분 불가…?
게시글 주소: https://orbi.kr/00069538025
사진처럼 극값에서 좌극한이랑 우극한이랑은 부호가 달라서 미분이 불가한거 아닌가요?
그렇다면 이차함수나 삼차함수같은 극값이 존재하는 함수도 미분이 불가능한거 아닌가요?
사진처럼 극값에서 좌극한이랑 우극한이랑은 부호가 달라서 미분이 불가한거 아닌가요?
그렇다면 이차함수나 삼차함수같은 극값이 존재하는 함수도 미분이 불가능한거 아닌가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이게 맞나
-
운영 빡세게 해서 변별할거 같음
-
이게 맞나?
-
심콘 가버렷 11
흥분이되.
-
애니프사 맞팔구 21
이분은 제 아내입니다
-
Ladies and Gentlemen, My name is Ryan from...
-
지방에 살아서, 살 수 있는 거 (인강컨)은 다 직접 내돈내산 하고 어쩔 수 없는...
-
이상형 6
-
야 너 이름이 뭐니 최고차가 3인 이차함수니?? 아 너가 1과 3을 근으로 갖는...
-
딱 1시 되자마자 5초동안 까고 바로 지울거임 그뒤론 기회없음 ㅇㅋ?
-
플러팅녀 얼공한거 11
도용 맞다 ㅇㅇ 20년에 누가 오르비 클래스에 인증한거 그대로 퍼날했네 ㅋㅋ 아재요...
-
뭐깔지 투표좀 10
ㄱㄱ
-
아주의에 갈 것.
공부를 조금 다시하셔야 할듯해요…
죄송함미다…
lim(h->0){f(x+h)-f(x)}/h 에서
그리신 그림은 h가 너무 커요 h를 매우작게하면 양쪽에서 기울기가 0이므로..
아 너무 커서 그렇군요
그 논리면 모든 점에서 미분못함뇨
0=-0 이라서 됨니다
닉네임 신중하게 생각해보시길
지능이 딸려서 죄송합니다
ㅋㅋㅋㅋ 장난입니다 저런 의심하는건 좋죠
엡실론-델타 논법 검색해보셈
원래 그런 식으로 눈으로 보이게 하는 게 아니고
h->0이면 |h|가 모든 양수보다 작아야 함
...
뭔가 참신해서 웃음터짐
절댓값 함수 정도 되어야 극값인데 미분 불가능한 예시가 됨
저거는 그냥 미분가능한 경우
그리고 거기서의 미분계수는 0임