작수 미적 27번 질문
게시글 주소: https://orbi.kr/00069447904
원래 2번풀이가 정석인거로 알고있습니다.
그런데 1번 풀이처럼 t와k의 관계와 무관하게
y =f(t) 식에서 t만 변수로 보고 k를 상수취급해서 미분해도
같은 답이 나오는 이유가 뭘까요..?
이렇게 항상 풀어도 되나요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
조희지(28) 1
희지는 22살이에요. 이게 2019년이니... 이제 28이겠군요.
-
카지1노랑 무빙은 봤어요
-
응애 0
또 졋어
-
기존 9등급제 내신 받은사람들은 대학에서 내신 산출을 어떻게 해주나요? 5등급제...
-
아가기상 8
모두 안뇽
-
시발점 대신 마플교과서 하고 수분감 뉴런 커리타도 괜찮겠죠? 1
예비 고3입니다. 원래는 방학동안 미적분 시발점과 공통 수분감 뉴런을 하려했는데...
-
지구가악 36
지구가 아퍼요 질문받아요
-
04입니다 29
네.
-
한번도 안둘어봤는데 정병호쌤 4등급이 들어도 괜찮나요
-
이번주가 현강 4주차라 이제는 결정을 해야해요.. 주변애들 대부분이 조정식 현강을...
-
인생초기화 시급 0
다시살면 더 멋지게 살텐데 어째서. 다 망한거 억지로 잡고있는것이냐
-
사과주스 마싯다 0
애플주스!
k가 t에따라 바뀐다면.. 안됩니다
우연히 답이 똑같이 나온거 아닐까요?
애초에 k가 t에 따라 바뀐다면 k는 k라는 상수가 아니라k(t)라는 함수로 보는게 맞아요
그쵸 아무래도 k가 단독으로 있는 f(t) = e^(-k)에서 k를 상수로보면 f'(t) = 0이라 잘못되는데, t가 포함된 식에서는 예외적으로 k를 상수취급 해도 되나? 하는 혼동이 잇엇서요..
출제자가 좀 배려해준 감이 있긴한데요 t에 대해 미분할때 k가 t의 값에 따라 변한다면 상수취급하면 안됩니다
넵 알겠습니다