합성함수 인식부터 치환적분까지
게시글 주소: https://orbi.kr/00069306012
문제 같이 읽어보겠습니다.
뭔가 그림 그리고 싶다는 생각이 듭니다.
이 정도로 그리면 되겠습니다. 노란색 동그라미 친 건 미분계수입니다.
문제를 마저 읽어볼게요
아, f(x)가 아니라 f(2x)래요. 그것도 그려줍시다.
x=1에서 미분계수가 2인거 바로 보이시나요?
이쯤에서 잠깐 딴 얘기로 샜다가 돌아오겠습니다.
(딴 얘기)___________________________________________________________________________________
이건 cos함수에 5x를 합성한 함수입니다.
5x는 x보다 다섯배 빠르게 진행되기 때문에,
cos5x 함수는 cosx 함수에 비해 모든 대응되는 구간에서 다섯배 빠르게 변합니다.
미분계수가 다섯배인 셈이죠.
또 다섯배 빠른 진행속도 덕분에, 함수는 다섯배 축소됩니다.
(딴 얘기 끝)________________________________________________________________________________
이런 이유로, 앞선 문제에서
이렇게 그릴 수 있던 겁니다.
이제 문제 마지막 부분 읽어볼게요.
음.. 이건
f(2x)의 그림만 보고 a는 1이고 b는 1/2이라고 읽으면 됩니다.
긴 설명 대신 그림 2개면 충분할 겁니다.
함수 그림은 냅두고
x, y 축만 샥 바꿔주면 됩니다.
우리가 잘 알고 있는
이 사실을 수식적으로 이해해도 좋지만,
저는 때에 따라 조금 더 기하적인 느낌으로 이해합니다.
이렇게 말입니다.
앞선 예시도 이런거였죠.
하지만 이 얘기는 f(x)와 f(3x)처럼 단순히 일차함수를 합성했을 때만 쓸 수 있는 얘기가 아닙니다.
다음 문제로 넘어가봅시다.
지수함수 f(x)에 대해 다음 값을 구해야 하는 상황입니다.
가독성을 위해 엄밀하게 적지는 않았지만 다 이해하셨을거라 생각합니다.
일단 절댓값 f(x)부터 그려봅니다.
-1에서 미불이고, 이때 오른쪽 미분계수는 ln2입니다.
이제 어떤 빨간 점이 이 곡선경로를 쭉 따라간다고 해봅시다.
이 빨간점은 y=x세제곱 함수의 속도로 곡선경로 위를 움직이는 중입니다.
y=-1일 때, x세제곱 함수의 미분계수는 3입니다.
따라서
여기 -1 부근에서 빨간점은 경로를 3의 속도로 지나가는 중입니다.
아까 문제에서 h'(a+) 구하라고 했었죠.
3의 속도로 기울기 ln2인 구간을 지나는 중이니까 답은 3ln2입니다.
근데 삼차함수에다가 대고 막... 속도 개념을 부여해도 되는걸까요?
또 잠깐 딴 얘기로 샜다가 올게요.
(딴 얘기22)___________________________________________________________________________________
아까 cos 5x는 진행속도가 일정한 경우였습니다.
그런데 진행속도가 일정하지 않을수도 있습니다.
(예전에 제가 썼던 칼럼 일부를 인용해왔습니다)
앞서 언급했던
이 사실이 이러한 이유로
이렇게 인식될 수 있는 겁니다.
시간 있으신 분들은 아래 기출 문제 풀어보세요.
귀찮으면 넘어가시구요
답은 19+20= 39입니다.
알려드린 걸 통해 풀면 인식하기가 훨씬 쉬울겁니다.
(딴 얘기 끝)________________________________________________________________________________
아직 할 얘기가 많이 남아있습니다.
합성함수 인식은 결국 치환적분의 얘기로 이어집니다.
다음 편 링크 남겨드립니다.
0 XDK (+10)
-
10
-
개음 -r-이라는 게 있어서 중간에 계속 r 발음이 납니다.
-
카기분
-
국어는 정석민 5
수학은 김기현 영어는 션티
-
화작 88점뜸 1컷 몇일까요
-
고1 첫 내신 140등이후로 내 선택에 후회한 적 없다 3
매번 최선이였음 후회도 없다 중3-고1 초반에 미친놈마냥 쳐논게 후회되긴하지만...
-
목표어떰
-
작수는 계속 맞고 올해 6평은 다 틀림 ㅅㅂㅅㅂㅅㅂ 그리고 23은 ㄹㅇ 할만했네요...
-
생명 실모 9
가계도 돌연변이 풀어놓고 근수축을 못풀었음 요즘 근수축 왜케 어렵냐ㅠㅠ
-
-6 나왓어욤!!!
-
크아악 0
과제 하기싫어
-
소신발언 3
대신손녹음 엌ㅋㅋ
-
남자 여자 공대 여자 제가 만든 말 아님
-
이재명 조국 대통령 당해봐야 정신차리지
-
그래서 재수를 하게 되었는데 기대만큼 성적이 오르질 않네요 재수 실패하면 이 상태로...
-
영어 6에서 3까지 올렸는데 아직도 해석이 긴가민가하고 제대로되진않아요 그래서...
-
한번만 도와줘라 도저히 못풀겠다 좌변식 적분하면 어떻게 저식이 나오는거냐….
-
ㄱㄴㄷ 문제인데 내가 본 것만 배성민 정병훈 강윤구 임 근데 더 웃긴건 한 번...
-
tan sec^2 적분할때 tan 치환할때랑 sec 치환할때랑 다르게 나와서...
-
현강다니는 사람들은 시대컨이 넘쳐난다는데 돈없는 지방러라 울엇어..
-
사실 일베 안함 14
디씨 식물갤만 하는 드루이드엿던것이와요 하와와
오 cos2x 같은 일차항의 계수만 달라져서 합성된 상황만 x축 방향 축소로? 알고 있었는데
이차함수같은 게 합성되어 있어도 되는 느낌이네요
특정한 한 지점에서는 이차함수도 지수함수도 직선으로 근사할 수 있기 때문이라고 생각해도 되겠습니다
무민은좋아요
라끄리식수학적사고ㄷㄷ
https://orbi.kr/00064989284
그동안 쓴 칼럼 리스트입니다. 필요하신 분들 참고하세요
진짜 좋은 칼럼
우와...
식으로 파악하던걸 가시화해주네요
간단하보이지만 누군가 이런걸 정리해주지 않으면 써먹기 쫄리던데 감사합니다!
신기방귀
f(x)를 g'(x)의 속도로 지나가고 있다고 해야 맞을듯
g(x)의 속도 (=g’(x) )로 지나간다는 의미였습니다.
저도 둘 중에 뭘 쓸까 고민했어요
말씀해주신 것처럼
g’(x) 의 속도라 해야 와닿는 거 같기도 하네요
좋은 지적 감사합니다 ㅎㅎ
그러면 "g(x)와 같은 속도“는 어떤가요?

처음 의견 내주신 것으로 수정했습니다. 감사합니다합성함수기울기=각위치 겉속 기울기의 곱
엔축공부하면서 떠올렸던 건데
속도개념으로 볼수도있군요!
goat...
와 제가 이해한방식이랑 거의 유사합니다
정돈된 버전?
남들한테 퍼지는게 아까운 수준의 글이네요

앞으로도 좋은 글 많이 써보겠습니다 ㅎㅎ
와..진짜 벽이느껴진다....딴얘기, 딴얘기 끝이라고 표현해놓은게 왜이리 귀엽게 보이지ㅋㅋ 잘봤습니다

ㅎㅎ 감사합니다 또 좋은 글로 찾아뵙겠습니다저 다 봤어요 이제 내려주세요

ㅋㅋㅋㅋ ㅋ개추

많이 배워갑니다 선생님 :)좋은칼럼 잘보고갑니당