f(x+y)=3f(x)f(y)
게시글 주소: https://orbi.kr/00069140426
수2 첫 개념공부 하는 중입니다.
f(x+y)=3f(x)f(y)이고, f'(0)=2 일때 f'(2022)/f(2022)의 값을 구하는 문제인데,
여기서 f(x+y)=3f(x)f(y)를 미분하면 f'(x+y)=3f'(x)f'(y)+3f(x)f'(y)라고 생각해서 풀었는데
이 식이 틀린 것 같더라구요.. 곱의 미분법을 사용해서 이런 식이 나왔는데 왜 틀렸는지 이유가 궁금합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
재수 삼수실패해서 망하면 보통 다들 정시발표까지 뭐핫 0
삼수실패햇는데 새벽까지 넷플릭스보는가 어케생각함?
-
아니 왜 아무도 0
ㅎㅇㅅ님 프사 뒤집고 로우플렛이라고 활동 안하는거지 언젠가 해보고싶긴 한데
-
일본인 같이 생겼다는 말 개많이 들음 곧 코 끝 수술할거라 동그란 이미지는 탈출
-
오르비나 하고있네ㅋㅋ
-
ㅇㅈ 바겐세일 4
그냥 잘나온 사진들 다뿌림 히히
-
다음닉은 4
저능부엉이 마냥 하이샵으로 하겠습니다
-
친구 만드는 것 혹은 연애하기에 지나치게 집착하면 오히려 생길 인연도 안 생기는 듯...
-
내일 아침에 일어나야하지 않나요?
-
아닌데?? 나한텐 오르비 친구들 있는데?? 나에겐 소중한 친구들임
-
햄부기 4
-
선택좀 1
경희대 정디플, 기계 디스플레이쪽 요즘 안좋다던데
-
이거 먹을려고 열심히 일 했어요
-
2시 쯤이면 ㅇㅈ해도 되려나
-
얼굴은 앵간만하는데 키크고 개잘먹게 생김...... 교복입고 엘베탔을때 어르신들한테...
-
ㅇㅈ 14
-
17명뽑고 점공 15등입니다 2022년에 21명뽑고 점공 23등까지붙고 2023년에...
-
이해안갔었는데 여르비 ㅇㅈ보니까 바로 이해감
-
나에게는 옯붕이들이 있잖아 제 친구 해주실거죠?
-
두번다시볼일없는 개 쓸데없는 스크린샷이 차지함 나머지 8%는 카리나
-
미소녀는 잠꾸러기
-
ㅇㅈ
-
자신의 인생의 엔딩이 독거노인 엔딩일까봐 두렵지않음? 제가그럼
-
네 그렇습니다
-
ㅇㅈ 9
할 사진이 없다
-
이상하게 나이 좀 있으신 분들이나 선생님 몇분만 잘생겼다 해주심 4
친구들한텐 한번도 못들었고 인상도 그닥이었던 것 같은데 이렇게 괴리가 있는 이유를 잘 모르겠음
-
ㄱㅁ하나만 할게요 11
저는 살이 잘빠지는 체질이라 걍 하루 이틀 밥좀 적게 먹고 하면 살이 그냥 막...
-
ㅇㅈ 6
근데 진짜 몇살땐지 나도 모르겠네
-
ㅇ
-
ㅇ 9
ㅇ
-
위험하다
-
다시 한번 생각해보시길...
-
나중에 수능만점받고 인터뷰할 때 파묘당하면 부끄러울듯
-
친척: OO이는 올해 어디가니? 나: 전 의대인데 지방쪽으로 갈거같아요 OO의대요...
-
몸좋고 키크고 잘생기고 금발에 피부까만
-
인생
-
나는 밥을 굶어도 안빠지던데.. ㄹㅇ 40후까지만 빼고 싶은데 빠져도 2키로가 한계임,,
-
ㅇㅈ 7
취해써 ㅣㅎ히
-
일상 공유함 3
일상이 없음
-
문득 그런 기도를 할 때가 있었다 그러자 신은 나에게 발뻗잠이 가능한 점공 등수를...
-
18수능 가형 2등급이었으면 지금은 1등급 걍 찜쪄먹나요? 3
지금은 등급이 문과랑 통합됐다는 소리가있던데
-
ㅇㅈ할 사진 따위는 존재하지 않아
-
초등중등 걸칠 시기 아무도 모르는 사진이라 특정당하진 않을듯? 지움
-
의지가 차올라요
-
솔탈 1
언제할까
-
슬퍼졋어 2
나쁜 넘
-
기만
-
사진을 너무 0
많이 털었어
-
ㅇㅈ 2 15
고전재탕
우리가 평소 하는 미분이 x에 대한 미분(d/dx)이라서 그렇죠 y를 y(x)처럼 x에 대한 함수로 생각하면 그렇게 미분할 수 없음을 알 수 있습니다
f(x+y)는 f'(x+y)로 미분할 수 없는 함수에요! 고등학교 미분에서는 무조건 '변수가 하나일 때'만 미분 가능한데, 여기서는 x랑 y가 모두 변할 수 있는 값이라 미분하면 큰일납니다! 해설지 보셨겠지만 미분계수의 정의 형태로 만들어서 푸는 게 올바른 풀이에요:)
y에 0 대입하고 x에 대해 미분해봐요
x와 y 모두 변수라 x와 y중에 하나는 상수로 두고 미분하는게 쉬웠어요