[칼럼] 돌림힘 평형에 대한 접근(1편)
게시글 주소: https://orbi.kr/00071622839
안녕하세요. 저는 25 수능 현역으로 물리학2를 응시했으며, 44점을 맞아 2등급..이지만 조금이나마 물리학2를 공부하시는 분들에게 도움이 되었으면 하는 마음으로 이 칼럼을 적게 되었습니다. 사소한 변명을 하자면 6평 때 48을 맞아 2등급을 맞은 적을 제외하곤 모두 1등급이었습니다만(이렇게 보니 평가원은 9평을 제외하곤 모두 2네요..), 제 스스로 자격이 부족하다고 생각이 들어서 쓸지 말지 고민을 많이 했지만 겸손하게 글을 적어보고자 합니다. 자기소개는 여기까지 하고 본격적으로 시작해보겠습니다.
목차
1. 기본 돌림힘 평형
2. 질량 중심과 그 응용
3. 대상을 계로 인식하기
------------------
4. 2차원 돌림힘의 2가지 접근법(2편)
1. 기본 돌림힘 평형
돌림힘 평형 문제에서 주어지는 근본적인 조건은 크게 2가지입니다. 첫 번째는 힘의 평형이고, 두 번째는 돌림힘 평형입니다. 이 조건을 활용하는 가장 기본적이며 중요한 생각은 해당 물체가 평형이라면 어느 곳으로 축을 잡아도 돌림힘 평형이 성립한다는 것입니다. 즉 계산을 최대한 간단히 할 수 있도록 축을 설정하는 편이 유리하겠죠? 또한 이 생각에서 자연스럽게 상황이 변화해도 그 변화한 상황과 이전의 상황에서 발생한 토크의 변화량끼리 같다는 식을 쓸 수 있습니다. 다음 문제에서 간단히 적용해봅시다.
어렵지 않은 문제라 잘 푸셨을 것 같습니다.
저는 위와 같이 풀어봤는데요. 아마 평형을 유지할 수 있는 x의 최소와 최대의 상황에 대한 이해는 당연히 될 거에요. 전체 무게가 P에서 Q로 변화하게 되는 상황인 것이죠. 즉, 전체가 d만큼 변화한 토크=A가 x2에서 x1으로 변화하며 생성한 토크로 식을 세울 수 있겠죠? 이렇게 식을 작성하면 경제적으로 문제를 풀 수 있습니다.
2. 질량 중심
질량 중심이라는 것은 물체 전체의 질량 중심점을 의미합니다. 이를 이용하면 전체의 무게가 어디에 있어야 하는 지를 생각하며 문제를 풀 수 있는데요. 모든 질량을 중심점에 모으게 되면 그 점을 중심으론 돌림힘이 발생하지 않는 점이라는 의미도 있습니다. 즉, 이를 이용한 풀이도 1번의 풀이와 근본적으로 다른 풀이는 아니라는 점. 이러한 관점을 이용하면 힘을 합치거나 분배할 수도 있습니다.
즉, 이렇게 정리해볼 수 있을 것 같습니다. 내분을 역으로 이용하면 분배할 수도 있겠죠? 이를 이용해 문제를 풀어봅시다.
풀어보셨나요?
이런 식으로 질량 중심을 활용할 수 있겠죠? 조금 더 활용해봅시다.
1번의 풀이와 결합하고, 힘을 분배하면 빠르니 조금 더 응용이 필요해 어려웠을 수 있습니다.
이처럼 질량 중심을 활용해 힘을 합치거나 분배하여 문제를 직관적으로 빠르게 풀어나갈 수 있습니다. 나아가 질량 중심이라는 개념을 활용하면 물체가 막대에서 움직일 때 질량 중심의 속도를 구할 수 있습니다.
만약 질량 중심의 위치 변화가 없다면 위치가 변하는 물체끼리 변화량의 합이 0이면 평형이 유지가 되겠죠? 실제로 질량 중심의 위치가 변화한다고 하여도 위 공식을 활용하면 조금 더 간단히 상황을 기술할 수 있을 것입니다. 다음 문제로 정리해봅시다.
처음 풀면 좀 당황스러울 수 있는 형태의 유형입니다.
ㄷ은 스스로 풀어보세요!
3. 계로 관찰하기
여러 층으로 구성된 막대를 보면 돌림힘 평형을 여러 번 써야 하는 번거로움을 느끼실 수 있습니다. 그 때 여러 층으로 구성된 막대를 전체적으로 한 번에 관찰해봅시다. 가장 위 막대에 모든 줄이 종속되어 있는 경우에 계로 관찰한다는 것의 의미는 다음과 같이 유도 및 해석할 수 있습니다.
만약 다른 막대에도 줄이 연결된 경우는 어떻게 해석될 수 있을까요?
이처럼 P와 Q를 합친 한 막대로 인식하고 a, b ,e가 연결된 계로 인식할 수 있습니다. 역학에서 계에서 내력이 0인 것을 인지하는 것과 유사하게 생각할 수 있을 것 같습니다.
이것을 이용해 문제를 한 번 풀어볼까요?
한 번 풀어보셨나요?
이렇게 계로 관찰할 수 있습니다. 사실 위에 질량 중심 속도 문제도 이와 같은 이유로 합칠 수 있었던 것이기도 합니다. 한 문제 더 봐보죠.
질량 중심을 잘 이용해야겠죠?
간단히 풀리는 문제죠? 이제 줄 3개가 연결된 상태의 문제를 풀어봅시다!
풀어보셨나요?
계로 인식하면 최대, 최소가 되는 상황을 빠르게 인식할 수 있다는 장점이 있긴 했지만 계산할 때는 크게 유리한 지점은 없었네요. 이처럼 줄이 3개 이상 연결되는 경우엔 계로 상황을 인식하는 것이 상황 판단에는 유리할 수 있지만 계산할 때는 꽤 복잡해진다는 단점이 있습니다.
이상으로 1편을 마치고자 하는데 도움이 되셨을지 잘 모르겠습니다. 최대한 열심히, 오류 없이 전달하고자 했는데 오류가 있다면 지적 달게 받겠습니다! 2편을 적을 수 있는 상황이 된다면 2편으로 돌아오겠습니다. 긴 글 읽어주신 것에 감사드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅁ끄엥
-
기타히어로 등장
-
화1 화2 고민 1
24수능때 화1 2등급 맞은 물화러 입니다 다시 수능판으로 돌아오게 됐는데요 요새...
-
오랜만에 무물보 5
안받겠습니다
-
저도 의외로 잘하는거 12
-
나무 잘탐 졸라 잘탐 진짜로
-
걍 불행 행복 이런거랑 무관하게 새로운 인물들이 내 인생에 나타나서 도장깨기 중임 재밋어
-
시험 얼마안남아서 마지막으로 화학1 수특풀려고하는데 2점은 풀만하고 3점은 몇개뺘고...
-
제발 나이거너무먹고싶어제발
-
"마르크스 경제학 강의 복원하라" 연서명 나선 서울대생들 0
작년 가을부터 수요부족 이유로 미개설…"대학 근본적 목적 외면" (서울=연합뉴스)...
-
[칼럼] 2028 예시문항을 통해 본 2022 개정 교육과정 기반 국어 출제의 방향성 1
2028학년도 대학수학능력시험 예시문항 세트의 구성을 통해 파악할 수 있는 점들을...
-
하루에 실모 3개를 꾸준히 풀면 100점 나온다고 듣긴함
-
하지만 난 착하니깐
-
영어 0
이 해석본 저만 이해 잘 안되는거 아니죠?? 영어 번역은 잘 됐는데 내용이 계속...
-
이걸놓치다니..
-
이거 맞냐
-
~~~~
-
그보다 목소리가 좀 신기하네요 노래 좋다~
-
벌써 곧 4시네요 16
어쩐지 피곤했는데 벌써..
-
수학 고민? 4
qed같은 초고난도 n제 풀면서 약간의 고민이 생긴게 문제 해석이 잘 안 되니까 아...
-
파데만 끝내고 오늘 아이디어 들어봤는데 뭔소린지 모르겠으면 킥오프랑 기생집 2.3점...
-
심연도 날 들여다 본 것 같은..그런 기분이 들어....
-
근 1년 중 제일 늦게까지 깨어잇는 듯
-
여기 츠케멘이 참 맛있어요
-
空の青さを知る
-
야와조기에서 0
야와만 지키는중
-
내 눈!!! 7
야갤 보다가 ㅎㅋㅅ 봤어....
-
오전에 운동 갈 수 있을까...
-
재종 편입 2
시대 재종이랑 s2 , 강대 본관 인문반 대기 넣어서 합격했는데 지금 가도 따라갈수...
-
일기 끗 5
님들 뒷담 잇다고 한 거 구라임 이제 진짜 자야대는데 커찮군
-
관심 있는 분들은 도전 ㄱㄱ
-
코노세카이와 단스호루~
-
하 습해
-
24수능 (찍맞X) 25수능 (78, 28찍맞) 5, 21, 22, 27, 29, 30 ㅁㅌㅊ
-
후배들한테 자꾸 연락와서 몬하겟음.. 자꾸 질문하는데 나도 잘 모르겠어서 억지 대답...
-
아오생화학시치 1
서술형다버리고 족보객관식만외워야지
-
예전같지않아
-
자야겠다
-
밤샘시작!!!!! 20
으아아ㅏ느느느아아아랑ㅇ아나아나나나아ㅏ아아아아아아!!!!!!!!!!!!!!!!!!!!!...
-
으으으 5
-
제발화요일에도와주세요제발
-
현역 수능 미적분으로 21252맞고 수학을 잘해서 5가 있어도 그 덕에 건동홍 경영...
-
ㅋㅋㅋㅋㅋㅋㅋㅋ 다들 한 번씩만 봐보세요
-
왤케 습하지.. 0
제습기 킬까..
-
제주도 살고싶다 0
여기 너무 좋아요
-
심심띠예 0
ㅜㅜ
-
ㅈㄱㄴ
-
김동욱 정석민 0
김동욱 일클 거의 완강했는데 처음에는 뭔가 알 것 같더니 아직까지 겉으로만...
물2 재밌겠다
현장에서 풀맞한 문제들이...