[칼럼] 올해 평가원이 만지작거리고 있을 패
게시글 주소: https://orbi.kr/00069001994
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
컨관님 5
황올vs족발
-
반갑습니다. 21
-
컨관님 여자임? 4
잘까 말까
-
그냥 자랑이랄까… 15
어느새 네 마리의 엄마가 된 또치! 종종 함께 티비를 봅니다. 나머지 두 장은 제가...
-
엄마 아빠 사랑해
-
가격이 1,471,117 XDK네 .. 150만 덕코만 빌려 주실 분 ..?
-
8학군 여고였는데 다 순박하게 공부만 하는 애들 유순한 부녀였음 진짜로
-
굿나잇 11
오르비님들 안녕히 주무세요 다들 사랑합니다
-
컨관님 메타임? 0
컨관님 팬티에요 ㅎㅎ
-
전성기 오이카와에 대해 어떻게 생각하시나요 침묵은 찬양의 의미로 받아들이겠습니다
-
아시는분
-
나름의 기준이 있을거같다 이거야
-
폭주
-
사랑한다 연세 17
수지를 볼 수밖에 없어..
-
컨관님 옯창에게 4
덕코주면 안잡아먹지
-
1.설의적 표현의 전닉은 무엇인가? 2.레어의 얼굴의 인물을 맞추고,대표작 한개...
-
컨관님 뉴비에게 0
덕코주면 안잡아먹지
-
반수 0
지잡대 간호학과 붙었습니다. 기숙사 생활하면서 (1인 1실) 1학기동안 입시...
-
덕코님 1
컨관주세요 얼마면 살수있나요
-
덕코주세요덕코만있으면사랑해드림
-
진심이엇어요! 0
-
필수본 복습용 워크북에 해설지 원래없었나요?? 안보이는데 있었는지 없었는지 헷갈리네요
-
관리자님 1
3만포인트만 쌓게 도와주세여~~
-
제가 메타열었움요ㅋㅋㅋㅋ
-
덕코주세요
-
오야스미 2
쪽지하랴 오르비하야 사진 찾으랴 존나 힘들다
-
이렇게하면 덕코주시겟지!
-
살살 녹네 덕코
-
오늘 마지막으로 듣고 잘 노래 여러분이 댓글 달아주세요
-
즉시 적발일듯
-
세상은 5
-
덕코 구걸 3
받은 만큼 베푸겠습니다
-
밥주세요
-
젖지대머리 4
옛날에 이러면 없어졌는데 컨텐츠관리자 대머리
-
컨관조아 덕코조아
-
이런 이모티콘은 레벨제한 있는건가요? 이모티콘 창에서 안보입니다
-
덕코주시면 6
덕코받을게요
-
ㅇㅈ 5
오늘 야식은 짜파게티
-
순간 당황해서 고개만 도리도리함 나 실어증 걸려버린걸까...
-
왠지 모르게 다들 자료글에 등급올린글 쓰시네 ㅋㅋㅋ 4
몇에서 몇으로 올린비법 시동걸고 계시는데 저도 한번 조만간 어떻게 4에서 1컷으로...
-
찬양하라 3
추앙합니다
-
옯붕이들의 순수한 등판요청으로 귀찮은 관리자는 7ㅐ추 ㅋㅋㅋ
-
빌어본다
-
서울대 투과목 필수폐지후 투과목 상황 지금 화1 상황 뭔가 겹쳐보이지 않음? 아님 말고
-
덕코주시면 사랑해드림뇨 19
고고
-
.
-
천만덕 가쥬아
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
올해 진짜 진짜 충분히 낼 수 있는 소재라 생각합니다!!![](https://s3.orbi.kr/data/emoticons/dangi/034.png)
항상 감사합니다혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ