[칼럼] 올해 평가원이 만지작거리고 있을 패
게시글 주소: https://orbi.kr/00069001994
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
비가오지말라해
-
국어 질문 0
올오카 끝냈는데 뭐가 더 나을까요?
-
야 너 3
화이팅해
-
3모 84 (미적 30번 틀 찍맞없음 ) 이었는데 미적은 올해 처음하는데요 저같은...
-
나 내가 못해서 행사 펑크낸거지 뭐 ㅠㅠ 누굴 탓하겠니 ㅠㅠ 허 ㅠㅠ 지방발령...
-
난불을질러 2
심장을 태워 널 미치게하고싶어 Big yeah we bang like this 모두...
-
이것은 한국 우주항공청에서 2045년 화성탐사를 목표로 하는데요. 성공하길 빕니다.
-
へうん 1
♥︎
-
말로 생각하는 순간 이미 그 순간은 지나쳐버린것 그 순간, 그 생각 자체를 온전히 그대로 느껴야함
-
가게에서 혼밥 첨해봐 10
떨린다 휴게실에 사람 넘 많아서 롯데리아 머그러 왔는데 떨린다 너무 헙
-
어느 곳에도 마음을 두지 마라
-
비가 싫다 0
싫으면서도 언어의 정원같음
-
해적왕인거야
-
아 개좆됏네 2
내 인생 가장 못본시험인데
-
수학과외구합니다 0
수학과외구합니다!!!
-
2025학년도 을지대 입시결과(수시, 정시_의대 포함) 0
2025학년도 을지대 입시결과(수시, 정시_의.. : 네이버블로그
-
우일신(又日新) 파본형 월간 N제 1월호 :...
-
전공 중간고사 후기 11
-
요즘 지구 0
아때요?? 지엽 많고 등급 따기 많이 어렵나요??? 현역 때 지구 하구 재수때 사탐...
-
정승제 ebs 확통 수능특강 강의로 개념배워도 됨? 1
확통 노베인데
-
레어사야됨
-
유튜브 1도 안보고 바로 랭겜간다
-
1kg임
-
3월 더프 언매 92. 미적 88. 영어 84. 물1 50. 지2 33. 4월 더프...
-
설탭 해보신분 0
갤럭시탭은 아예 안됨요??
-
타격 있을 것 같음 없을 것 같음?
-
지문 진짜 줫같네요 무지성 정보나열만 하는데 분량이 4문제짜리 최근기출의 1.5배...
-
아 파전에 느린마을 한 잔 하고싶네
-
어케 생각하시나여… 수능 때도 이러면 좀 그렇겠죠?
-
빅포텐 123 : 병호쌤 풀커리 타는중이라 이건 어지간하면 할듯 드릴 있는거 전부...
-
기하 질문 있음 0
최근 몇갸년 보니까 이차곡선에 대해서 접선 문제는 거의 안나오고 정으ㅏ로만 풀리는...
-
ㅠㅠ 집갈까요..
-
웃참함
-
애미 없나 진짜 2
;;
-
지금 수학 어떤거 하고계세요?ㅠㅠ 웬만한 엔제랑 실모 다 풀어봐서 풀게 없네용...
-
지방러라 시대라이브 하시는 강사분들로.. 지금 박종민t 듣는데 너무 빡세서 내신휴강...
-
둘다 중요하다고 생각함 하나만 공부하는건 너무 안좋음
-
[신춘문예] 0
집으로 돌아오던 밤 내리던 투박하고 무겁던 눈들이 마치 비와 같았었는데 그것은 한...
-
학교 자습 3교시 째 저는 놀고만 있습니다 포기했냐고요?아닙니다 자신있냐고요?...
-
생각해보면 3
군대 갔다 복학한 애들도 ㅈㄴ 애기네 해봐야 25정도일건데 얼라들이네
-
조진건가 0
막판에 젤 복잡한거 하나버렷는데 그게나왓네 그래도 벼락치기치곤 ㄱㅊ응거깉은데...
-
고3인데 정시로 가고싶어요 궁금한점은 1. 수특은 보통 언제까지는 끝내야 함? 2....
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
수의대 다니면서 조류에 대해서 조금 아는 거라곤 닭뿐이었음... 동물들은 정말 신기하고 지혜로운듯요
-
자작시-정자체 0
-
기하 ㄱㄱ
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..

올해 진짜 진짜 충분히 낼 수 있는 소재라 생각합니다!!
항상 감사합니다혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ