뉴런 들으신분 한번만
게시글 주소: https://orbi.kr/00068977065



띰 14-2에 차의함수의 인수개수를 이용해서 마분가능 판정하는 내용이 있습니다, 근데 들흉악 케이스에서 좌/우 극한이 모두 함수값과 다르므로 차의함수로 구할수 없다고 생각해서 큐브에 질문도 해보고 큐앤에이도 봤는데.. 만약 x=a에서 6이라는 함수값을 가지고, x>a, x<a에서 동일한 함수형태를 가질때 차의함수는 0이 되므로 인수가 몇개인지 판단할수 없는데 우진쌤은 어떻게 차의함수 인수가 하나를 가진다고 하셨는지 이해가 잘 안됩니다..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진리다 줄치고 쫙쫙 외우자 ㅠㅠ
-
S급은 망해도 A급 정도는 해준다.무조건 지를때는 S급을 질러라어중간한 A급...
-
(수험생인데)수능 ㅂㅂ일 가능성이 더 크지 않냐?이제 9평도 치고-67일인데자기...
-
박주영ㅋㅋㅋㅋ 0
통수가 장사
-
근데 꼴블보소 0
아니 앞에 누가 좀 나가달라곸ㅋㅋㅋㅋ 봄쿠랑 추추 두명의 동양인들만 야구하네 ㅠㅜ
-
목표치 상향조정 해도 될듯 0.290-0.350-0.450-0.800호무랑은 13개정도만
-
2루타-워크오프 쓰리란-3루타-솔리런 ㅋㅋㅋㅋ 딸바보 추추
-
지구는 2
공기때문인지 유통기한이 있대 우리 얘기도 그래서 끝이 있나봐
-
내 마음 도착했는지 네가 숨쉬는지
-
꼭 무슨 애니메이션 캐릭터가 기타치는걸 빨리감기한 느낌ㅋㅋㅋ가슴팍에 올려 매고 치는게 참 귀여움
-
딴곡들은 솔직히 난 좀 별로고 미안해 널 미워해이게 최고!인듯꼭 방송에서 해줬으면
-
못가능가 그레인키야 좀 만 잘하자...
-
ㅇㅇ 0
ㅇㅇ
-
흠... 0
요새 이런 저런걸 보고 읽으면서 느끼는 건데 밑바탕에 깔려있는 추잡한 모습을...
-
간지가 안나네 날카로운 턱선도 어디로 사라지고나잇살인가
-
외쳐 李李! 1
분식 안하고 잘 막았다 빠따 역전 ㄱㄱ
-
우선이형 떳다! 0
1승 ㄱㄱㄱ
-
ㄱ뫼ㅚ굳굳
-
아기네스 딘인데 진짜 이쁘당...약간 미소년삘도 나고또 얼굴에서 은근히 섹시함도...
-
가라 라헤삘나고 좋음
-
왠지 1위하는거 보고싶다 ㅠㅠ
-
nl중부 선둨ㅋㅋㅋㅋㅋ ㅋㅋㅋㅋ 매카친성님 진짜 쩌는듯
-
아 ㅡㅡ 2
스텟티즈 망함... 개크보 기록 여러모로 잘 볼수있던 유일한 곳이...
-
지누션 두 곡 0
아 진짜 쩐다...멋쟁이신사도테디甲
-
반도에서 0
힙합은 다 필요없고 페리 스톰앨범이 교과서 ㅇㅇ 아차 VJ도
-
지누션과 페리는 1
국내 음악사에 길이 남을 이름 holdin' down에서 프로디지는...후아 ㅋ
-
멜론 가서 긁는 일만 남았다 근데 왜 2008년 앨범은 없을꼬
-
이렇게 빨아드렸는데ㅜㅜ 터지면 얼마나 기쁠까...솔직히 차우찬은 별로 안빨았지...
-
호호호 0
All my life i've been fall- fall- falling...
-
허러러럴 1
7월 13일 정현이형 생일이었네... 오뎅탄신일만 기억하고 있었는데...
-
it's not the Fall that Hurts 1
쩐닼카카카캌카카카카카카카ㅏ카카캌ㅋ
-
우리나라는 저런 밴드 하나 안나오나 큐ㅠㅠㅠ
-
하 0
스웨덴 밴드caesars라는 밴드를 알게됐는데쩐다대박스웨덴 밴드 죽이는 밴드 많은듯...
-
호옹이 0
ㅇㅇ
-
모상기 전진형 동영상 계속 보게 되네... 양씨 오톳이랑 완전 똑같음ㅋㅋㅋㅋㅋ...
-
피안타율 피장타율도 줄고 so/bb는 더 좋아지고진짜 dramatic한 변화를 올해...
-
해해해해해멀스갑 1
올해도 WS 엠비피 먹었으면 좋겠다... 아니면 사이영
-
네셔널 중부 진짜 재밌을듯... 밀워키 세인트루이스 피츠버그 ㅋㅋㅋ
-
채고의 마무리투수를 영입했습니다 여러분! 내년에 필더 나가고 어쩌고올해 쇼부 제대로...
-
쇼 삼성의 최형우 넌 주인공 인거야 언제 까지나 영원히~
-
투런♡
-
형우신 사랑해요 0
만쉐
-
형우♥ 0
역전승♡
-
광수 쓰리런ㅋㅋㅋㅋ
-
1이닝 3실점이 뭐야 돌았네 진짜지 분에 못이겨서 직구 꾸겨넣는거 보소
-
앰흑간지...방망이 돌리는 폼이 리얼ㄹ
-
ㄲㄲㄲ 리얼좋은쪽으로든 나쁜쪽으로든신의한수
-
옹꾸라 들어야지 요즘은 또라이들이 너무 끌림
-
그냥 갑자기 넬 노래 듣다가 생각이...예전에 펜타에서 술먹고 꽐라된 상태로...
-
저게 커터다 슬라이더다 이런 저런 말이 약간씩은 있던데 우선이형 슬라이더랑...
양 쪽 함수를 그냥 각각 하나의 함수로 보면(구간별 함수라고 보지말고 그냥 각각의 함수를 실수전체에서 정의된 함수라고 바라봐보시라는 뜻입니다!) 한 정의역에서 하나의 함숫값으로 수렴한다는게 두 그래프가 그 정의역에서 교점을 가진다는 것이기 때문에 차함수 식을 써보면 그 정의역에 대한 인수를 1개 이상 가지게 돼요
*이 부분이 가장 중요한 것 같네요* ‘극한‘은 그 정의역에 ’다가가는‘ 것이지 절대 그 정의역이 될수는 없기 때문에 이 상황에서는 x=a에서 ’함숫값(그 정의역에서의 값)’이 어떻든 그건 상관이 없습니당
양쪽 극한식 세워보시면
대충 1차라 치고
왼쪽
2(x-a)+k
오른쪽
(X-a)+k
이런 식으로 나올텐데 (그래야 x=a로 리미트 보낼때 k라는 같은 값이 나옴) 이 둘 차함수 구해보시면 x-a로 묶입니당 같은 값인 k로 수렴하는데 차함수를 하면 그 k가 같아서 사라지고 인수만 남기 때문입니다
제가 질문을 잘 이해한거겠죠 ..? ㅜㅅㅜ
넵 그거 맞아여 근데 이러한 경우도 있지 않을까 해서 질문드린거에요
이럴때는 인수가 하나만 나오는게 아니니까요 ㅠ
저 상황은 아예 함수가 같은 상황인데 그러면 모든 정의역에서 인수를 가지는거죠 !! 아예 그래프가 겹치니까요!
아아 그니까 두 함수가 같으면 미분계수까지 같으니 한 정의역에서 인수 2개라는 말씀이신거죠? 근데 저기서 저 그래프가 미분이 불가한 이유는 양쪽 극한이 달라서 문제가 아니라 함숫값이 양극한과 다르기 때문에 발생하는거라서 연속성을 채우려면 인수가 1개 더 필요하단 뜻 같습니다.
두 그래프 차함수가 인수 1개라고 설명하신건 그냥 인수2개라는게 결국 인수 1개 즉 수렴값이 같은 경우를 포함하고(인수2개면 인수1개는 자동 만족), 저기서 중요한건 양극한의 인수가 2개냐 1개냐가 포인트가 아니고, 함숫값과 양극한이 다른것이 포인트이기 때문에 인수 1개로 퉁치고 설명하신거 같아요
글쓴이 님 말대로 정확하게 말하면 인수1개이상이라고 볼수있겠네요
미분가능성이나 연속성은 애매할때 인수 갯수를 외워서 적용하는 것보다 대수적으로 증명한 후에 인수 갯수 따지는 게 훨씬 명확하게 이해되더라고요!!
설명 감사합니다! 근데 인수개수가 하나이면 미분불능, 인수개수가 두개이면 미분가능이 항상 적용되는건 아니라는 말씀으로 이해해도 될까요..?
함숫값만 다르고 극한값이 같은 구간별 함수인 경우 인수개수가 두개인 경우에도 (글쓴이님께서 말씀하신 케이스처럼 아예 같은 함수를 타거나, 아니면 양쪽 함수가 같은 함숫값으로 수렴하면서 미분계수까지 같을 경우) 함숫값이 극한값과 다르면 연속성이 만족되지 않기 때문에 미분불능일 수 있다는 겁니다 !
(인수 개수가 2개인 경우 중에서도 함숫값이 극한값과 같으면서 인수 갯수가 2개면 미분 가능한거죠! 미분계수 정의 써보시면 처음에 분모랑 분자의 인수1개 약분되고, 그 후에 남는 값들 극한 보내면 남아있는 분자의 인수 1개 때문에 0으로 똑같이 수렴함을 알 수 있습니다)
그래서 결론은 미분가능성, 연속성의 개념이 나오면 애매할때는 무조건 그 특이한 정의역(의심점)에 대해 리미트 씌워서 보내본다, 애매할땐 무조건 미분계수의 정의로 관찰한다입니다 !!
그래서 저 띰에서 나오는 내용도 그냥 인수갯수를 기하적인 느낌으로 기억하기 보다는 직접 간단한 예시 함수 잡고 극한 씌워서 보낸 후에 ‘아 여기서 다르니까 1개만 있으면 되네~ 아 얘는 인수 1개 추가해도 분모랑 약분되면 남는 값이 달라서 인수가 2개 필요한거였수나??’하면서 대수적으로 이해해보는게 조씁니다 ..! 이 단원은 어렵게 나올수록 기하적 접근이 불리하다고 생각해서 미리 이렇게 해보심이 좋지 않을까 제안드립니다 .. (일개 수험생이지만 ….)
넵 감사합니당
그러면 마지막으로 죄송한데
같은함수를 타고 한점에서 함수값이 다른 경우는 미분계수의 극한값을 만족하고 차함수도 인수개수가 하나 이상이지만 기하적으로 보았을때 그 지점에서 불연속이므로 미분 불능이다 맞나요??
네네 !! 미분계수의 극한값이라고 하면 조금 위험해서(애초에 미분계수가 정의가 안 되는거거든요. -> 1점(함숫값 다른 그 점)에 대해서는 무수히 많은 직선을 그을 수 있기 때문에 미분계수가 1개로 정해지지 않는다) 그냥 좌우극한 씌웠을때 같다고 해야할거 같아용 ..! 그래서 저 문장에서 미분계수의 극한값을 만족하고 -> 이거만 빼면 다 맞습니다!!