킬캠 시즌 1 3회차 후기
게시글 주소: https://orbi.kr/00068562664
틀린문항: 30
1,2회에 비해 준킬러가 조금 가벼운 느낌의 시험지라고 생각
그럼에도 어려웠고 계산도 엄청 절었음
6번: x축과 이루는 각이 예각이라는 고정관념에 빠져서 문제조건이 어떻게 이렇게 주어진거지? 라고 혼자 이상한 상상을 함. 넘겼다가 2트때 차분히 다시풀음
9번: a1a2에서 a3a4로 넘어갈 때 r^2만 곱해주면 되는줄 알고 계속 착각함. 여러번 풀다가 넘기고 2트때 돌아와서 차분히 다시 풀음
거의 한 4번은 풀은듯
10번: 좌극한, 우극한 나눠 조건 뽑기. 식 3개 미지수 3개 이므로 계산
11번: 삼각함수 그래프 그려서 차분히 조건에 맞게 사고. 최솟값을 33이라고 생각하여 4번을 골랐을 수도 있었을 문제
12번: 둘러싸인 모든 영역의 넓이는 차의함수를 통해 구해줄 수 있음. -1,0,2중 어느 것이 중근인지 결정해야 하는데,
(가),(나) 조건을 취합하여 가능한 경우를 머릿속으로 쉽게 그려볼 수 있음. 가능한 경우는 x=0
이후 적분 계산 (2024학년도 6월 10번, 14번에서 이와 비슷한 계산을 시켰으므로 과한 계산은 아닌듯함)
13번: 2024학년도 9월 평가원 12번 변형문제. 당연히 시작점을 a5로 잡고 정방향 추론.
케이스 분류 후, 조건에 맞게 역방향 추론. 무난한 수열 문제
14번: (나)조건 보고 벙찜. 고1때 배운 것 같은데 까먹어서 벤다이어그램 그려서 무슨 의미인지 파악.
케이스 분류 시, 특수한 경우부터 기준잡아 분류해야 하므로, 중근을 가지는 삼차함수 먼저 그려봤더니 바로 조건에 맞
아 떨어짐. 비율관계로 계산까지 마무리하고, 최종계산까지 방정식 풀어주면 끝.
고1 수학을 계속 상기하게금 하는 현우진T의 의지가 느껴짐
15번: 핵심아이디어는 닮음, 원에 내접하는 사각형.
이 조건들을 이용해서 ㄱㄴ판단, ㄷ계산. 이러한 세팅으로 주어진 도형문제를 꽤 만나보아서 원에 내접함이 보임.
1트때 ㄱㄴ판단하고 2트때 돌아와서 ㄷ계산 마무리
20번: 2019학년도 나형 21번보다 살짝 난이도가 낮은? 잘 만들어진 문제.
항상 이런 문제는 (모르는 함수)=(아는 함수)로 정리하여 세팅
이후 당연히 특이점에 집중하여 삼차함수 식 파악
굉장히 특이하다고 느꼈던 포인트는, 한 개의 발문으로 2개의 조건이 도출된다는 점.
21번: 겉보기에 사설틱하게 생겨서 쫄고 들어갔는데 막상 풀고 나니 상당히 깔끔했음. 많은 교훈을 주는 좋은 문제라고 생각.
항상 너무 복잡한 계산을 시킬 때는, 잠시 보류했다가 보다 더 나은 방향을 모색해야함.
설마 거리공식? 이건 아니겠지. 라고 생각. 어차피 식과 그래프는 상호보완적인관계이므로 그래프관점으로 전환.
두 길이가 같이 위해선 X변화량과 Y변화량이 동일하면 되겠구나라고 파악 후, 좌표 작성. (단 조건 놓쳐서 절음)
이후 부등식은 깔끔한 로그 부등식.
22번: 풀면서 계속 2023학년도 6월 평가원 14번이 생각났음.
미가+?=미불이면, ?=미불이므로 절댓값 g(x)는 x=0에서 미분 불가함을 파악.
하지만 g(x)는 미분 가능한 함수이므로, x=0에서 첨점임을 파악. 기울기 부호가 반대이므로 f'(0)값을 얻음.
이차함수식을 세팅하고 절댓값 g(x)식을 써준 후 x=0기준 어떻게 삼차함수를 설정해야 원함수가 최댓값을 가질 수 있
을지 고안. 당연히 중근을 갖는 삼차함수여야 미분가능하게 선택이 가능함.
어떻게 갈아타는 함수인지 파악했으므로 비율관계를 통해 계산.
문제들이 굉장히 아름다움
26번: 28번보다 훨씬 오래풀음. 3점을 계속 꼬아서 푸는 것 같은 느낌
28번: 언급할 필요도 없는 국밥 유형. 난이도는 2024학년도 수능 27번보다 쉬운듯.
29번: 약간 변수분리하듯이 일반항을 작성해주어야함. 이것도 예전에 비슷하게 풀어본적이 있어서 이 아이디어까지는
금방 도출했는데, 절댓값 an을 구하라는 것에서 당황함.
특이한 점은 일반항을 구하는 것에서 다소 복잡하고, 일반항을 구해서 다시 한 번 일반항을 구해야한다는 것.
29번치고는 상당히 어려웠다고 생각.
30번: 읽지도 못하고 끝남
역시나 준킬러 폭탄으로 잔잔히 때리는 시험지인데 2회보다는 무난한 느낌.
그럼에도 불구하고 어려운 난이도의 시험지라고 생각. 6평보다 어려운듯.
하지만 사설틱하게 과하게 어려운 느낌이 아니라 기출 복습 포인트도 많고 깔끔하게 어려운 느낌이 들었음.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언미화물2 97 95 1 97 98 이거 높반 가능한가요? 수학이 좆망했는데
-
한 번도 의심한 적 없었죠 ~ 몰랐어요 난 내가 벌레라는 것을
-
새로운 플레이리스트로 스펙트럼을 좀 넓혀봤어요 사실 힙합도 이런 감성적인 노래들을...
-
통학하면 가는데만 1시간 30분정도인데 더 멀리서 다니는 사람 있음? 일산 사는데 빡세네
-
아르
-
ㅇㅂㄱ 0
-
링거 꽂고 다니는 것마냥 계속 충전기를 꽂아놓고 있어야해..
-
제자야 기상해라 4
넵.
-
투표 1
ㅇㅇ
-
순순히 어두운 밤을 받아들이지 마오. 노인들이여, 저무는 하루에 소리치고...
-
누가 매일 1시에 기절시켜줬으면 아니야 그대신 앞으로 몇달간 새벽에 이런건...
-
명륜진사갈비 혼밥안되나..
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
아군
-
설대 최초합 등록 포기하고 의대 추가 합격된 곳으로 등록이 가능한 거죠? 그리고 이...
-
우선 괴델의 불완전성 정리제1정리. 페아노 공리계를 포함하는 어떠한 공리계도...
-
얼버기한 이유 6
오늘은 학원 강사 면접 보는 날이에용 ㅎㅎㅎ 절 응원해주세용!!
-
환전해놨는데 다 날아가네 ㅜㅜ
-
인생망함 3
ㅇㅇ
-
사람이되고싶다 4
앞으로 남은 272일동안 쑥과 마늘만 먹으며 수능을 준비한다면 4수 끝에 사람이 될수 잇을까
-
건동홍시임
-
질문해드려요 19
철학적인 질문을 던져보도록 노력하겠습니다
-
아니 이거 근데 오른쪽 눈은 눈무링 안나고 왼쪽눈만 눈물이 자꾸 고이고 뿌옇게 보이고 이러는데 2
이거 진짜 이항한거 아님?
-
저도 무물보 18
해볼게요
-
뉴런책 배열을 수1 23 24 25 26 수2 23 24 25 26 미적 23 24...
-
네임드는 이 시간에도 무물글이 5분만에 저렇게 차는구나 4
이게 고닉인가...
-
할수이ㅛ다
-
돌아가구싶다 2
나 돌아갈래
-
일취클 피램 다 띁나면 사모로 넘어가는게 맞을까요?
-
애반가요??
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
피로도 다쓰고 캐릭터 생성제한도 걸려서 더 할게없네
-
1. 고전논리는 완전함2. 산술체계는 고전논리로 나타낼수 있음3. 산술체계는 완전함...
-
무엇이든 물어보아주세요 13
선넘질 ㄱㄴ 선넘질 ㄱㄴ은 쉽게 오지않습니다.
-
굿나잇 2
ㅃ
-
일클 취클 문학 피램 풀건데 고전시가는 인강or문풀중 뭐가 좋을까요?인강추천한다면...
-
무엇이든 물어보세요! 23
생각보단 자주 안오는 기회에요
-
졸리니까 1
운동
-
지금까지 안잤네 진짜 어카지 조졌다 하…..
-
잘자요 10
꿈에서 깨지 않았으면
-
XX님 따라하게
-
막 부모님이랑 싸우다가 부모님이 화내면서 님들 소중한 물건 찢거나 버리거나 한적...
-
국어가 장애인급이면 반수 접는게 맞음?
-
오야스미 0
네루!
-
국어가좃같은데반수접을까그냥
-
이렇게 곁에 있는데도 저 멀리 보이는데 그래도 괜찮아 꿈이어도 괜찮아 지금만큼은...
-
사실 저말이에요 19
전생 계속 티내고 있거든요 근데 알아보시는 것 같기도 하고 못알아보시는 것 같기도 하고
-
2.13 일기 7
사람들은 왜 수능을 더 보려고 하는걸까 비단 수능뿐만 아니라 편입이나 논술도...
-
아 춥다 스벌 2
우어어
-
기병 is so cute 이거 아직도 하시나요? ㅈㄱㄴ
첫번째 댓글의 주인공이 되어보세요.