킬캠 시즌 1 2회 후기
게시글 주소: https://orbi.kr/00068543819
1회보다 특정번호대가 훨씬 빡빡하게 느껴짐
틀린문항: 22,25,29
10번: 삼차함수 세팅 먼저 잘 해놓고 직사각형 넓이 / 삼차함수 넓이공식 으로 연립방정식
11번: f(x)-g(x)가 x=1을 삼중근으로 갖는 사차함수. 식 세팅한 후 f의 최고차부호, g의 최고차부호 케이스 분류
12번: Sn-Sn-1관계 이용 후 a2n-1, a2n에 대한 등차수열의 일반항 도출, 원하는 값에 맞게 시그마 적용
13번: g(x) 그자체를 다루기는 힘드므로 구간을 나누어 도함수의 부호변화를 관찰해야겠다 라고 생각
도함수의 부호변화를 곡선과 직선의 차의함수를 통해 파악할 수 있음. 최솟값은 결국 등호인 부분에서 발생되므로, 식
작성 후 이차함수=5x 의 판별식=0임을 이용해 f'(x) 완성
10번부터 13번까지 잔잔하게 계속 때리다가 14번에서 터뜨림
14번: 1트때 풀다 넘기고 2트때 간신히 풀음 도형에서 웬만하면 안막혔는데 상당히 어려운 문제인듯..
각 DAE가 공통각임을 이용해 각 BAE, 각 DAC가 같음을 파악
각이 같으므로 사인법칙을 통해 변의 비율을 파악해줄 수 있지 않을까? 라고 생각
위 각에 대한 길이 비율이 4:5이므로 추가로 정보를 얻을 수 있는 대변과 각을 엮어서 풀어줘야겠다고 생각.
자연스럽게 실측값이 주어져있는 BA와 AC에 눈길이 갔고 그 대각인 BEA와 ADC에 집중.
해당 각 들은 삼각형 ADE의 두 각과 여각관계에 있으므로 같은 사인값에 대해 DA와 AE의 비율을 얻어줄 수 있음
한 변수에 대해 길이를 표현해주고 DE도 코사인법칙을 이용해 표현, BD,EC도 마찬가지.
삼각형 BAE에서 각 AEB에 대한 코사인법칙을 이용해 실측값 도출 후 외접원 넓이까지 도출.
파악과정도 어렵고 계산도 어려움. 준킬러보다는 킬러에 가까운 느낌.
15번: 나름 무난한 수열문제. 시작점은 당연히 3항으로 잡고, 4항,5항에 대한 케이스를 분류하며 정방향 추론
맞는 케이스가 1개밖에 도출되지 않고, 이에 대해 정방향 추론 계속 진행하여 규칙발견, P값과 ap동시에 도출
역방향 추론도 시키지 않고 정방향 추론만 해도 풀리는 쉬운 문제
19번: 등비수열 합 공식 쓰기보단 S4=K라 하면, S8=K+r^4K임을 이용해 풀어줄 수 있음.
20번: 복잡하게 생각했으면 시간이 끌렸을수도..? 그냥 단순히 한쪽으로 몰아주고, 인수분해하고, f(x)를 해당 인수분해
식에 대입하여 4차함수를 구함. 해당 4차함수 그래프의 개형을 그려주고, 모든 a,b에 대해 성립해야 함에 집중하여
m의 최솟값 도출. 무난한듯.
21번: 그냥 필연적인 보조선 몇 개 그어줬더니 조건에 맞게 딱딱 맞아 떨어져서 굉장히 쉽게 풀음
22번: 1트때 못풀고 2트 때 재시도했는데 3분밖에 안남아서 함수가 어떻게 생성되는지 감상만 함..
25번: 이계도함수의 부호변화가 발생해야 해당지점에서 변곡점을 갖는데 무지성으로 f''(x)=0이 되는
x값만 찾는 상당히 허수같은 실수를 함.
28번: 2024학년도 수능 29번 변형문제. 그냥 just 계산문제이고, 차분히 위계잡아 연립방정식 풀고, 케이스 몇 개 분류
해주면 자연스럽게 풀려있음
29번: 15분정도 이 문제에서 계속 물림. 겉보기에 개 쉬워보이는데 답이 안보임. 뭔가 알듯말듯한 마음에 계속 잡고 있
었는데 차라리 22번이나 더 볼걸하는 생각이..
30번: 2020학년도 수능 가형 30번이랑 똑같음. 어떤게 변수고 어떤게 상수인지 명확히 판단 후 다변수미분법.
1회랑 비슷하게 잔잔하게 준킬러로 계속 때려서 빡빡한데 확실히 킬러까지 있는 느낌이라 더 어렵게 느껴진듯..
작년 킬캠보다 확실히 더 빡빡하고 이 정도면 6평보다 더 어렵지않나 생각..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
으응
-
그날 봐도 아는척 하지 말아주세오
-
약술형논술어떰? 0
친구가 반수하고 싶은데 얘가 좀 국못수잘이라 인서울 하위권이나 지거국만 가도...
-
양민학살한번해봐?
-
피램으로 기출분석+ 주간지 + 수특 깔짝하면 5시간 예상되는데 ㅅㅂ 말이되나 나의...
-
멜론송이도 있네 6
오
-
나도 가야하나
-
일단 중간고사 성적이 아직 나오진 않았지만 재입학한다고 내신을 더 잘볼 수...
-
난담배가싫어 6
응
-
숨은 그림 찾기는 존나 골 때리긴 하네...
-
3수 생각을 하고있습니다 제가 대전에서 중고등학교를 졸업하고 재수할때도 대전에...
-
SKT 해킹에 中해커 주특기 백도어 악성코드…"주체 단정 어려워" 0
중국 기반 공격자 주로 쓰는 'BPF도어 기법' 확인…"오픈소스 악성코드"...
-
ㅈㄱㄴ
-
곧연휴있음? 5
언제????
-
5월 모고 준비해야돼서 딱히 놀 수 있을거 같지도 않네 고3인생 너무 좆같다
-
생윤 너무 재밌다 11
사문은 너무 현실적임
-
간첩이 대선 2위…정보전선 뚫린 '이 나라' 망했다 2
━ [제3전선, 정보전쟁] 베트남전쟁 정보전 오는 30일은 남베트남 패망 50주년이...
-
연대인문논술 준비하고 싶은데 가능성 없는 거면 안 하려고요… 정시가 애매해서..
-
내신 문제 오류 진짜 많음..
-
가족끼리 서울로 간다고 해서 시험 끝나는 당일하고 5월 6일 대체공휴일만 놀 수...
-
찍맞이나 시험장에서 말리는거 없고 머리는 평균 이상이라고 가정 완전 운의 영역임?
-
자살하고 싶은데 위로의 말 좀 해주라. ㅇㅇ
-
ㅈㄱㄴ
-
원래 전국에 단 4명이었는데
-
잡담 태그만 달아야 하는데 실수로 반대로 함... 놀라서 호다닥 지워버림 아무도 못 봤겠지
-
애매한 대학보단 효율 최강인 것 같은데...
-
올해부터 자퇴후 재입학이나 1년꿇기 엄청 늘어날듯 10
안하고는 방안이 거의없음
-
내신 1학년 1학기부터 망치면 방법은 자퇴 후 재입학밖엔 없는거? 09 이후 애들 기준 ㅇㅇ..
-
난이도가 천자만별이네
-
도저히못하겠다 4
허리가아파 좀 걷다와야지
-
그래서 독서하기 월요일 시험이지만 일단 이건 다 읽고 시험칠거야
-
공대 가산점 3프로면 사탐 만점이 더 높지 않아요?
-
사진은 대략기능들 사진구현(근데웬만하면 텍스트나 말로설명하기쉬우면 그렇게할예정) 특이점은온다
-
가루비 포테토칩 와일드콘소메맛 + 시오 야키소바
-
답률 살ㅈ짝 궁금한디..혹시 표 갖고계시면 올려주시면 그랜절올리겟스빈다...
-
적정가 120달러
-
독서실에 박아두고 먹어야지 ㅋㅋ
-
으으 7
먹기싫어 이게 뭐야
-
싶은줄 알았는데 아니엇음.. 다음주에 술마시러 놀러감 아니 8명이서 만나는데 내가...
-
어쩌라고
-
전반적으로 과자들이 덜 짜고 덜 달아서 별로임 일본에서 파는 가루비칩인가...
-
힛히
-
등급컷 응시자수등 결과로만 보면 과탐 생지도 남아있는게 바보일정도일까요? 생명은...
-
이번주에 오르비 2
1시간도 안 함
-
수미칩도 나쁘지 않음
-
tex.com/npay
-
강민철 0
지금 마더텅 독서 문학 이랑 100인의 지혜로 혼자 하고 있는데 혼자 하니까 너무...
-
항상 독서가 어려우면 화독문으로 바꿨다가 문학이 어려우면 화문독으로 바꿨다가 고정이...
-
심찬우
22번걍버림
29 구간도 바뀌는걸 까먹음 ㅅㅂ이
ㄹㅇ...어케 품 넘 어렵
그런거일단 치환적분 ㅇㅇㅇ 기출에잇자늠요 tx=u로 바꾸고 x를 상수취급
그럼변수 바꿀때 x dt=du
아 맞네요...그거 시도해볼라다가 sin에도 대입해야되서 돌고 돌거 같아 안해봤는데 시도라도 해볼걸 ㅠㅠ
저는 14 21 30을 못풀고 22 29를 풀었는데 완전 반대성향이시네요.. 도형 잘하시는 거 너무 부러워요
도형이 평가원보다 많이 어려운 느낌이여서 점수 상방이 저보다 훨씬 높으실듯..