[자작 문항] 6모의 계산 더러움을 반영함
게시글 주소: https://orbi.kr/00068311203
뭐 아마 오류가 있을 수도 있겠으나....뭐 문제는 딱히 없어 뵙니당....
고1 수학+계산 더러움(feat. 내신틱)-> 6평 느낌 반영....
이라고 생각함....
풀이에다가 답 알려주시면 1000덕 드림.....
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지금 역대급임
-
공부하는 와중에도 무의식적으로 다른 생각함 어젝밤에 본 웹툰 생각이남 집중이 잘...
-
자러갈지도 1
자러갈지도
-
오래된생각이야
-
시발 병신팀 2
개시발아오 ㅈ같은 새끼들 진짜 니들은 다 나가뒤져라 이 병신 ㅈ장애인구단아
-
팀 첫 메이저 대회 우승을 이끌어버리네 ㅋㅋㅋ
-
ㅇㄱㅈㅉㅇㅇ? 6
아이고…..
-
에제 핸더슨 지럈다잉 캬~~이거지
-
교도소였음
-
국정원 심찬우 커리로 쭉타서 5>3후 정도로 오른것 같긴한데 여기서 뭔가 정체되는...
-
난 어제 친구따라 갔다가 너무 싼마이 감성이라 충격받음 이상한 천박한 구호 외치더니...
-
인 연속함수 f(x) 가 존재하는가? 이 함수의 성질은 어떠한가?
-
뭐지
-
인강은 쓸모없다. 11
군대 가기 전 알바도 열심히 하고 주변에 공부 잘하는 친구들 얘기도 들으면서...
-
굳이 독재학원 다닐 필요 잇을가여? 근처 독서실 다닐까 생각중인데
-
잘자 아가들아 6
형 자러 갈게
-
답 470
-
ㅇㅋ ㅇㅋ, 그럼 오르비식으로 가볼게. 아 진짜 이거 말하면 좀 그렇긴 한데,...
-
저 조금 궁금해짐 오르비에 쓴 글들 gpt에 한번 돌려보면 뭐가 나올지도 -
-
자연수 하나를 저장하고 있는 기계가 있다고 하자. 이 기계에 저장되어 있는 숫자가...
-
이제 진짜 잔다 6
8시에 강기원 자받튀하러 가야됨
-
애니메이션 뭐에요..? ㄹㅈㄷ네
-
국수영 원점수 기준 전교 3등 국수영탐 원점수 기준 전교 2등 (추측)...
-
원래 수분감, 카나토미 이정도 하고 엔제 풀려고 했는데 교육청기출까지 하고...
-
메인글 뭐노 2
이제 봤네
-
레전드겠네 은케티아 유관 아스날 무관 ㅋㅋㅋㅋㅋㅋ
-
제 옆에 누워서 같이 자요 졸려..
-
시험장에선 좀 헷갈렸는데 지금 보니까 한눈에 보이네
-
아침 안 먹으면 훨씬 버티기 수월함 뭐 먹는 순간 긴장 다 풀리면서 급 졸림...
-
성대논술갔을때기억남 22
그때존나서러워서길거리걸으면서울고있었는데 그때길안내같은거하는성대생이왜우냐고하면서...
-
남자 유튜브에선 주접떨어도 별 말 안 하는데 왜 여자가 저런 글이나 영상 올렸을때...
-
9시 수업인데 9
지금까지 안자는 나는 머하는 머저리
-
쪽지기다려봅니다
-
독재 다니니 0
만날 시간이 없다 끄엥ㅠㅠ
-
출연 각인데 이젠진ㅉ인거 너무 티날듯
-
사실 이번에 개쉬워서 킬러도 아니였어서 2분컷내시면 goat 18 19번을 종치기...
-
어제와 3
오늘의 온도가 너무 달라서 비행운이 만들어졌네~
-
1, 2, 3교시 국수영 영역 시간: 250분 선택과목: 미적분과 영어 독해의 매체
-
본인 중딩 때 옆학교에서 소년원 가는 게 일상이었음 5
근데 팩트는 저런 넘들이 나보다 나은 인생이라는 거임 ㅅㅃ
-
격기 3반 고트...
-
장재원 서바 0
지금 장재원 대기40번인대 재원이 시즌1 안듣고 서바 들어도 ㄱㅊ아요? 미적3초임..
-
안녕하세요. 제 공뷰계획에서 수정할 부분 한 마디씩 말씀 해주시면 감사하겠습니다!...
-
왜 2
기여우신 분들이 다 탈릅하지 ㅠㅠ
-
유일한 자부심 5
고3도 고정1
-
슬전생 이거 짖짜 재밌긴하네 로맨스가 맘에 안들어서 다 찢어버리고 싶긴했지만 재밋어
-
올해 적백맞고 다들 성불하자
-
그냥 내 국수 백분위가 1등임 ㅋㅋ
-
본인 개좆반고특징 21
1. 교내 흡연의 생활화 2. 오토바이 등교의 생활화 3. 하교 후 음주 문화의...
-
양심고백 5
모 고대생 오르비언 특정한적 있음 보닌도 이미 특정당함
이런건 왜 반영 크아아아아아악
ㅋㅋㅋㅋ아마 계산하다가 뒷목 잡을 거임....내가 잡음....나도 내 해설 안 봤으면 영영 답 몰랐을 뻔ㅋㅋㅋ
3번으로 찍고싶네요
감각적 직관 a=1 b=4
왜 먹히는 거죠
벅벅

f(x) = k(x - a)(x - b)²f'(x) = 3k{x - (2a + b)/3}(x - b)
g(x) = k(a - b)²(x - a)
f(x) / g(x)f'(x)
= k(x - a)(x - b)² / 3k²(a - b)²{x - (2a + b)/3}(x - a)(x - b)
= (x - b) / 3k(a - b)²{x - (2a + b)/3}
f(0) = -kab² = -16/27
h(x)는 x = 2에서 불연속이므로 (2a + b)/3 = 2, b = -2a + 6
h(x)는 x = 3에서 불연속, |h(x)|는 x = 3에서 연속이므로
(3 - b) / 3k(a - b)² = -1,
b - 3 = 3k(a - b)²,
-2a + 3 = 27k(a - 2)² → ⓐ
f(0) = -kab² = -4ka(a - 3)² = -16/27,
a(a - 3)²k = 4/27 → ⓑ
ⓐ, ⓑ에 의해
a(2a - 3)(a - 3)² / (a - 2)² = -4
a(2a - 3)(a - 3)² + 4(a - 2)² = 0
2a⁴ - 15a³ + 40a² - 43a + 16
= (a - 1)(2a³ - 13a² + 27a - 16)
= (a - 1)²(2a² - 11a + 16) = 0
∴ a = 1, b = 4, k = 1/27
f(x) = 1/27(x - 1)(x - 4)²
f(5) = 4/27
캬ㅑㅑㅑ
|h(x)|는 오직 x = 2에서만 연속인 게 아니라 불연속인 거 맞나요?
일단 오타인 거 같아서 이렇게 생각하고 풀긴 했는데
넵 오타 맞습니다....수정하겠음뇨