5월 모의고사에 나온 핵심 발상 정리
게시글 주소: https://orbi.kr/00068091766
안녕하세요 ㅎㅎ
미적분 기준 1컷 71이 나오는 시험 보느라 굉장히 고생 많으셨습니다.
지금쯤 5월 시험지를 어딘가에 고이 모셔놓으셨을텐데
다시 꺼내실 필요는 없고 제가 밑에 적어놓은 것만 빠르게 훑어 보세요.
굵은 파란색 글씨가 핵심 발상이니 그것만 빠르게 보시고 다 아는 내용이면 패스, 모르는 게 있으면 짚고 넘어가세요.
잔발상이나 지엽적인 발상을 다 빼버리고 많은 문제에 적용되는 핵심 발상만 모아서 몇 개 안되니까 이것들만큼은 다 알고 갑시다.
모든 문항에 대한 손해설지는 내일 올릴 예정입니다.
----------------------------------------------
9번 (정답률 48.9%)
an과 Sn이 같이 나오면 Sn-Sn-1 = an (n>=2) 를 반사적으로 생각해 줍시다.
----------------------------------------------
11번 (정답률 36%)
(가)와 (나) 모두 수열을 빼라고 하네요
18학년도 6월 나형 30번입니다. 두 문제가 비슷하죠. 함수의 차로 보듯이 수열도 수열의 차로 볼 수 있습니다.
----------------------------------------------
15번 (정답률 45.9%)
역추적. 그리고 이제 3의 배수 언급이 나오면 3k와 3k+1,3k+2 발상도 할 줄 알아야 해요.
----------------------------------------------
19번 (정답률 23.9%)
제곱근 문제 : "S의 실수인 n제곱근" 이 나오면 =x라 놓고, x^n = S 라 쓰고 y=x^n 그래프 그리세요. 제곱근 문제는 다 똑같아요.
----------------------------------------------
21번 (정답률 4.6%)
원의 등장 => 1. 원 위의 점을 중심과 잇기, 2. 원주각 => 이 두 가지 생각하세요
"평행" => 도형 문제 발문에서 '평행' 나오면 엇각, 동위각 쓰라는 말과 똑같습니다.
저는 각 CAD를 원주각, 각 COD를 중심각으로 보고 풀었는데 원주각을 이용한 풀이는 잘 없더라고요.
원주각 풀이는 손해설지 올리면 거기서 보시면 되겠습니다.
----------------------------------------------
22번 (정답률 1.8%)
연속 문제를 포장해서 어렵게 잘 낸 문제입니다. (가) 조건 해석하는 거에서 일차로 막히고, 그 다음은 (나) 를 만족하기 위한 케이스 분류에서 이차로 막혔을 겁니다.
곱함수가 연속이려면 연속 x 불연속 일 땐 연속함수의 함숫값 = 0 이거나 불연속 x 불연속에서 직접 연속성 확인.
----------------------------------------------
확통
모든 문제가 특별한 발상이 필요하다기 보단 꼼꼼히 케이스 분류해서 열심히 푸는 문제였습니다.
미적분
특별한 발상이 필요하다기 보단 주어진 조건을 잘 해석하는 게 관건인 문제였습니다.
궁금한 점 있으면 댓글 달아주세요~ 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
우우
-
자라고 욕해줘요 9
왜안잠 얘
-
라면추천좀 10
ㅈㄱㄴ 진짬뽕굴진짬뽕스낵면참깨라면진라면 너무많이먹어서 다른거 먹고싶어요
-
잇올 업키 3
성적 한 과목이라도 오르면 해주는거에요?
-
메인 무슨일임 6
왜 저분은 저격당한거죠
-
2028부터 삼각함수 덧셈정리는 간접범위에도 없음? 3
삼각함수 덧셈정리는 만국 공통으로 고딩때 배우고 들어온다고 가정해서 대학교재...
-
3합 6이상인 대학 지원할거고, 과탐1개 반영대학 지원할예정이어서요 수학...
-
오늘도 0
찬우쌤 강의 듣고 마무리 문학 공부까지 해서 너무 좋다. 찬우쌤 사랑해요. 심찬우
-
쇼츠로 보는데 꿀잼
-
국수영탐 백분위 85 94 2 96 91
-
정시가 바늘구멍 된다는건지 아니면 진짜 없어진다는 것인지?
-
무슨 말을 못하겠다 ㄹㅇ ㅋㅋㅋㅋ
-
70 80 3 65 78
-
스트레스 너무받는다 15
속이답답하다
-
배우 차은우 [인스타그램] [헤럴드경제=이명수 기자] 배우 차은우(28)가 올해...
-
마침표가 존나 웃기노
-
근데 저 글에서 3
“수학으로 살.인하겠습니다” 이 멘트가 왤케 웃기지 ㅅㅂ ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ...
-
전문직이니까. . 7급 수의사될수도있고 개원도할수있고 동물원에서 일할수도있고...
-
새벽에 세특써야겠다… 공부시간을 더이상 빼았기고싶지 않아여
-
나도 재릅인데 10
아무도 못 알아봄
-
성공한거임?
-
살좀빼야겟다 0
재수하고6키로가찐ㅋㅋ
-
4규 2
4규기하 유빈왜 없냐
-
많은 사람들이 과조건이 있는 문제는 퀄리티가 떨어진다고 생각해요. 하지만 생명1에는...
-
나 탈릅하면 4
굿다이노로 도배될듯
-
페도님의 장례식입니다 10
항상 핸복하세요..
-
담임쌤한테 앞으로 조회끝나고 무단조퇴 하겠다고 허락 맡아볼까요 자퇴는 좀...
-
굿다이노 3
좋은공룡
-
개고렙
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ...
-
부럽다
-
ㄹㅇ 안 오는거 같으니까 진짜 잔다 잔다 잔다
-
그때보다 실력이 늘었네
-
ㅅㅂ 20일만에 거의 한바퀴 돌려야겠네 ㅈ됐다
-
오 뭔가 수렴됨 2
고2때까지만해도 내신보다 모고가 더 잘나와서 (내신 국수44 모고32등급) 정시로...
-
오랜만에 해서 까먹었는데 이게 p2구할때 10분의 7이아니라 왜 8분의 7곱하는건가여..
-
수학질문 4
모의고사를 보면 항상 노찍맞 3,4점 한문제 차이로 2등급 안되는 3등급인데요.....
-
국어 수학(미적또는 기하) 영어 과탐(1) 3합 5가 최대목표이고, 3합 6은 꼭...
-
맞팔구 3
-
언니-동생이 동문이 되어버리는 아주 유링게슝한 상황이 되네요.
-
허구한 날 쓸데없는 걸로 싸우는 것보다는 낫네요
-
으악
-
의도적이지 않게 0
250630 복습하게 됐으면 ㄱㅊ ㅋㅋ
-
언미 고정1 영어 1~2진동인 무휴반엔수생인데요 나이가 많아서 올해 못 가면...
-
수행 대충 끝 0
머시기 설문조사 만들어서 뿌려버림 후련띠
-
으악우가 누고
-
06은 아니죠? 05인가 04인가
-
으악우 2
왤케 많이 특정당함ㅋㅋㅋㅋㅋㅋㅋㅋ 불쌍해
-
저만 미치도록 난해하고 적응 못하는건가요…내용 정리가 안됨;;;;;;;ㅜㅜㅜ...
-
오르비 안녕히주무세요! 10
오르비 잘자요~

왜 이런게 이륙 안할까…감사합니다 ㅎㅎ 제가 더 잘써야죠