[이동훈t] 기출로 기출 풀기 (241128) 미적분
게시글 주소: https://orbi.kr/00067438040
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
기출로 기출 푸는 법에 대한
얘기를 해보려고 합니다.
이 글은
기출 분석을 어떻게 해야 하는가에 대한
구체적인 예시가 될 것입니다.
22 학년도 수능 미적분 30 번
24 학년도 수능 미적분 28 번
이 두 문제로 설명해보겠습니다.
본론 들어가기 전에
수학 기본 체력에 대한
아래의 글도 함 읽어보시고요.
[이동훈t] 수학은 피지컬이지. 딴거 있나.
이제 가보자고 ~
시험장에서
위의 문제를 읽고 나서 바로 ...
푸른 칸 : 함수 f(x)의 정의 (방정식, 그래프)
붉은 칸 : 점의 이동 (대칭/평행/확대축소) + 식의 변형(필충관계)
위의 두 가지가 떠오르지 않았다면
아래 문제에 대한 이론적 복습이
부족한 것입니다.
위의 문제에 대한 자세한 해석은
아래의 글을 참고하시구요.
[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
22 학년도 미적분 30 번과
24 학년도 미적분 28 번은
큰 틀에서 문제의 구조가 같고,
소재로 보면 자매 입니다.
221130(미적분)은
점의 확대축소로
두 함수 f(x), g(x)를 결정하고,
(적분계산: 부분적분법(역함수의 정적분+기하적해석))
241128(미적분)은
점의 평행/대칭이동, 확대축소로
함수 f(x)의 방정식을 결정합니다.
(적분계산: 치환적분법)
2년 전에 확대축소만 출제되었으니,
평행/대칭이동의 관점까지 추가해서 출제한다.
그리고 부분적분법에서 치환적분법으로 바꾼다.
교육과정에서 보면 ...
평행이동 + 대칭이동 + 확대축소 = 점의 이동
부분적분법 + 치환적분법 = 초월함수의 적분법
이고 ...
이건 평가원 출제자들의
전형적인 출제 방식을 보여줍니다.
즉, 출제자들은 본인들이 만든 문제 A를 보면서
A 합 A^C = 전체
에서 A^C 에 해당하는 지점을 찾기 위해 노력 한다는 것입니다.
이렇게 하면
각 문항의 정답률을
원하는 대로 얻을 확률이 높아지지요.
나는 28 번 문제 생김만 보고서
' 아 이건 재작년 30 번에서 나온 문제네. '
라는 생각이 들었는데요...
안정적인 만점을 노리는 분들은
이 정도는 쉽게 보여야 합니다.
.
.
.
교육과정의 체계에서
이 문제를 분석해 볼까요 ?
f(9)/f(8) 의 값을 구하라고 하였으므로
함수 f(x) 의 방정식을 유도해야 합니다.
이때, 상수 k 의 값을 결정해야 하니,
구간 [0, 7] 에서의 정적분 값이 e^4-1 이다.
에서 k 의 값이 유도된다는 생각을 할 수 있어야 합니다.
중/고등 교육과정의 체계상
집합 -> 함수 -> 정적분
이므로, 이 문제의 주어진 조건에서
집합(정의역, 치역),
함수(의 방정식, 그래프, ...)
를 우선 살펴보아야 합니다.
함수(즉, 그래프)는 점들의 집합이므로
곡선 y=f(x) 가 지나는 점을 찍어야 한다.
곡선 y=f(x) 가 반드시 지나는 점을 찍으면
(g(t), t), (h(t), t)
인데. 붉은 칸에서
h(x) = k - 2g(x)
라고 하였으므로
(g(t), t), (k-2g(t), t)
입니다. 이때, 점의 이동의 관점에서
k-2g(t) 는 x 축 위의 g(t) 를
y축에 대하여 대칭이동시킨 후,
y축에 대하여 2배 하고,
x축의 방향으로 k만큼 평행이동시킨 것입니다.
이제 아래의 그림과 같이
함수 f(x)의 그래프를
그릴 수 있습니다.
(아래는 2025 이동훈 기출 미적분 풀이)
위의 풀이에서
정의역 : 실수 전체의 집합 = (-inf, 0) 합 [0, k) 합 [k, inf)
치역 : 음이 아닌 실수 전체의 집합
함수 : 두 구간 (-inf, 0], [k, inf) 에서 일대일 대응(방정식까지 유도됨)
구간 [0, k]에서 f(x)=0 (<-귀류법 이용)
정의역을 2개 이상의 집합으로 쪼개는 것,
각 구간에서 함수 f(x)의 방정식을 결정하고,
성립하는 성질을 생각하는 것,
귀류법을 적용하는 것,
막상 직접 출제 범위는 별 것 없는 쉬운 계산이라는 것,
... 등등이
이건 수능 문제야 !
라고 말하는 것 같습니다.
(이 문제의 경우에는
세 개의 구간으로 쪼개서 ...
두 개의 구간에서는 일대일함수,
나머지 한 구간에서는 상수함수임을 밝혀야 하지요.
이 과정에서 귀류법을 써야 하고요.)
.
.
.
잘 만들어진 수능 문제를 보면 ...
출제자들이 교육과정과
본인들이 만든 기출 문제를
얼마나 잘 이해하고 있는지를
알 수 있습니다.
.
.
.
이번주 중에
2024 수능 수학에 대한 심층분석글을
올려드릴 예정입니다.
또 만나요 ~~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이게 옯창
-
반급간까진 높공 낮공 이런거 가지고 고민할만하지만 한급간이면 학벌 차이가 드러나기...
-
저처럼 재수를 현역때보다 못보고 삼수하지말고...
-
자살 ㄱㄱ혓
-
뭐라고 생각함? 경제가 2받기엔 괜찮다는게 이거 생각하고 경제 생각하면 에반가요
-
충북 원광 빵꾸로 불인증 예고함ㄷㄷ
-
내년에는 컨설팅 업체 끼면 들어갈수 있을까 절대 고대빵 배아픈 서성한 맞음 ㅇㅇ
-
부엉아.. 6
너에게는 서성한이 조스로 보이는거냐..
-
킅니폼 자켓은 추후 열릴 온라인 스토어에서 구매가능 0
근데 추후가 언제인지 모름
-
반응이 좀 미적지근하면 날 불편해 하는거라고 생각해도 되나 감이 안옴
-
서울대 가놓고 설마 수능공부 하나? 왜 오르비에 아직도 남아있지? 옯창: 오르비가...
-
어디를 가야 하나요?
-
이게뭐노
-
낙지 최종컷 401-2점 잡혔는데 2차 396.7까지 추합됨
-
수능 D-640 1
오늘 목표 수1 자이 250문제 국어 문학,비문학 3지문 풀이
-
진짜 서럽게 쳐울었는데 작년 수능이 마지막일 줄 알았는데.. 재작년에도 마지막일 줄...
-
가입만 해놓고 다른 해에는 오르비 눈팅도 안 해서 올해 좀 잘했다?는 말은 잘 모르겠군요
-
조회 기간이 아니라고 뜸 조회 언제되는거임?
-
중대화공이면 5
평균적으로 lg유플러스이상의 회사갈수있나요? 숭실정보보호가 lg유플러스...
-
평가원 #~#
-
지금 카페가는데 새내기들 무슨 캠퍼스 투어같은거 하나봄 선배들 졸졸 따라가는게 ㄹㅇ 존귀
-
몇이심?
-
6명 뽑는 과에서 394가 최초합 했다는데 1차 2차 다 추합자가 나온 거면 진짜...
-
5점 (2~3등급) 수강생들의 평균 점수 수준 6점 (1등급~2등급) 매 회차 고정...
-
경제학과 노트북 0
경제학과 노트북 쓸 일 많은가요??? 노트북 배송이 3월 말에 올 것 같은데 괜칞을까요ㅠ
-
돈 벌러 가야지
-
오늘 잘생겼네 6
헬스 끝나고 씻고 나와서 그런가 얼굴 맘에듦
-
배터리가 8퍼야 ㅜㅜㅜㅜㅜㅜ
-
최고난도는 뭐였음?
-
동대 예비번호 0
최초합 때 몇배수까지 부여해줬나요?
-
제발 빠져줘요
-
믿을게 일론아
-
..ㅜㅜ
-
시립대 도시행정 0
지금 예비 몇 번까지 돌았는지 아시는 분 계시나요?
-
이번 수능 45414 맞았는데 재수하는게 맞을까요...(목표는...
-
서울대 등록포기 1
어제 낮에 환불신청 했으면 언제 환불받을 수 있는건가요?
-
몸이 썩어가지만 너무 맛잇다는거임..
-
무조건 8시 발표인가요?
-
인스타아이디도 있누.... 또 나만 진심이었던거지?
-
orbsuseu
-
동국대 전화추합 1
동국대 전화 받았습니다. 너무 걱정했는데 다행입니다.. 홍대 경영 빠집니다! 다들...
-
최초예비 15인데 붙음
-
서강 전자 버리고 갈게요... 선배님들 잘부탁드려요
-
서울대의예,연대의예는 운으로 결정되는거임?
-
원랜 전전 가려고 당연히 서강 자전이었는데, 인문 자전이라 전전 전공학점이 부족할...
-
전추 톡방 2
대학 톡방 들어갈때 보통 합격증 인증 필요하지 않나요?? 그럼 전추로 가면 어떻게 들어가나요…?
-
ㅇㅇ
-
대충 보니까 ㅈㄴ 인싸기질이더라? 오르비는 ㄹㅇ 연막이다 ㅇㅇ
선생님 쪽지 좀 봐주세요.
답장 보냈습니다. 감사합니다. :)
혹시 교재에서도 이러한 기출 간의 상관관계에 대해 언급해주시나요?
2025 이동훈 기출은 유형별 구성이며, 각 유형에 대한 실전 개념이 포함되어 있습니다.
위의 두 문제의 경우 ... 30번은 역함수의 미분법, 28번은 치환적분법에 해당하므로 같은 유형이 아닙니다. 다만 점에 대한 해석의 관점에서 같고 ... 이에 대해서는 실전 개념에서 설명하고 있습니다. (다만 위의 칼럼 처럼 직접적으로 두 문제를 대조비교하는 것은 아닙니다. 점의 해석을 어떻게 할 것인가에 대해서 실전 개념에서 다루는 것입니다. 이에 대한 문제는 워낙 많기 때문에 ... 위의 설명 처럼 두 문제만 딱 짚어서 대조 비교 하기 힘듭니다. 책이니까요.)
자세한 책 소개 글은 아래를 참고하세요. 감사합니다. ~ :)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
https://orbi.kr/00066537545