2016학년도 난만한+포카칩 오프라인 B형 일부 문항 해설
게시글 주소: https://orbi.kr/0006731758
2016 난만한, 포카칩 수능 직전 모의평가 29,30 해설.pdf
현장 응시자였습니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
환상 갖지마삼
-
기차지나간당 3
부지런행
-
돈 벌기 힘들다
-
저 사실 금발임 3
근데 흑발로 염색햇음
-
너...너무해여....
-
난 한결같은 사람인데 그거 가면쓴거엿던거임
-
특정한애가 박제해도 상관없어 이젠 나도 몰라
-
나가아니고 너
-
ㅈ...저는.. 물...물화라구여.... 젭알... 사탐런..하지마여....
-
흠
-
무브링
-
서울대 수리과학부 연세대 전기전자공학부 고려대 사이버국방학과 한양대 미래자동차공...
-
나도순한맛 2
원래김치찌개였는데 물많이부어서맹탕됐음
-
이시간에 배달비까지 해서 13000원임 거기다 콜라 1.25l로 줌 동네 치킨집인데...
-
사랑과평화우정
-
어피니티
-
어제 일당 ㅇㅈ 3
외화 유출 ㅈㅅ
-
진짜로
-
좋은꿈꿔
-
특정한번 당하니까 바로 그냥 아이고아이고아이고아이고 아이고맨이 되어버리고 이제는 망해버렸어
-
꼬리 흔드는거 하아...
-
내가 이김뇨 ㅋ 2
미지
-
ㅠ
-
의예과 제외
-
다음 프사 4
루시다음 닉 ㅁㄹ.
-
그랬기 때문에 항상 공허한 느낌이 드는 것일까요,, 어디로 가야 할지도 모르겠어요,,
-
잘자요 6
내일은 좋은 하루가 되었으면
-
17개월구라아님
-
나중에 수능망해서 거기보다 안좋은곳 가게되더라도 붙었는데안간거랑 떨어져서못간거랑...
-
그건 몸에 괜찮지않나
-
연초에 전담에 종류별로 몇번 해봐도 다시피고싶단생각이안들음 좋은거긴한데 신기하달까
-
Maybe there are still happy answers left for my discovery 0
What's the colour of the electric sheep you...
-
어 형이야 ???: 난 수학 전체 1타가 목표에요
-
소심해서 말못함
-
걍 엄마랑 쇼부볼까 열심히 살테니까 담배 피는거 허락해주라고 차라리 금딸이 쉽겠다
-
흡연열차시절 4
조금 그립네
-
2015년이 10년전임...
-
요즘새르비다시핫해셔서좋음
-
으갸갹 1
-
어른들은 몰라요 4
아무것도 몰라요마음이 아파서그러는건데
-
탈출하고 강대학사로….살면서 강남에서 다 살아보네요…. 참고로 학사는 강대학사...
-
이것도 메타라면 메타인가..
-
응애 3
난 아무것도 몰라요
-
맞현생이미지 예측 11
-
근데 오르비에서 만난 사람이랑 연애를 한 기록이 실제로 있음? 5
갑자기 궁금래짐
-
3대 영양소 5
카페인니코틴알코올
-
내꺼 연애운 4시간째 보는데 4시간째 똑같은내용으로 안좋게나옴
이거 문제는 어디서 받을수있나요.
http://orbi.kr/0006731700
마지막 문제 30번에서
일단 역함수존재이니까 양수는 보장이 되었구(일단 양끝에서 발산하므로)
2012학년도 30번처럼 어떤실수만 만족시키면 되니까 토미님 해설처럼 역함수의 미분은 어떤실수의 역함수의 역수로서 해석할수있게되고
일단 역함수가질조건이 2e보다크다이고
f'(x1)≤1/f'(x2)인 어떤실수이니까 좌변이 클조건은 극소일때 최소이고 우변도 극소일때 최대이니까 그래사 계산해도 무방한거죠?
토미님 해설이랑 일맥상통하는 이야기이긴한데
2개인변수를 1개인 변수로 줄이는게 근거가 잘 와닫지 않아서요
만약 도함수값의 최솟값이 1보다 크다면
모든 실수 x1 x3에 대해 도함수값이 둘 다 1보다 크므로
그 두 값의 곱이 1보다 작을 일은 없습니다
즉, 도함수값의 최솟값이 반드시 1보다 작거나 같아야만 합니다
2012 수능 30번에서의 '어떤' 구절을 처리하는 방법과 비슷한 논리를 사용하였다고 보면 되겠습니다
아 그렇네요
그럼 제 접근방식도 옳다고 할수있는거죠?
넵 맞습니다!!
변수를 1개로 봐도 무방한지에 대한 조건들을 아직 학습한적이 없어서 혼동이 오는데 변환가능한 시점들을 어떤 방식으로 판단하면되나요?
글쎄요... 이런 논리는 아직 유형화되지가 않아서 자신 있게 말씀을 못 드리겠습니다
다만, 식에 대한 적절한 해석을 통해 두개의 변수에 공통으로 성립하는 성질을 찾아내는 것이 바람직한 접근법이라는 정도는 말씀드릴 수 있겠네요
여튼 감사합니다
많이 배워가네요!
확인했어요! 감사함니다
문의하신 부분 보충설명 추가한 수정본으로 해설지 다시 올라갔어요~
좋아요 누르고 갑니다 수능 전과목 만점받으세요!!
감사합니다~ 좋은 결과 들고 다시 만나 뵙고 싶어요!!
~~~^^ 토미님 때문에 이과로 전과하고 싶어지네욧~~!! ^^!! ㅎㅎ
갓토미님이당
다른거는 다 풀기는 했는데 19번 하나가 안 풀리네요 19번 힌트나 해설 부탁드립니다 글고 문제 참 좋아요! 킬러문제들 퀄이 ㄷㄷ하네요
적분구간 평행이동이 힌트입니다
2-sinx와 2+cosx, 0과 pi/6이라는 적분구간에 주목하세요
저는 27번 부탁드려요.. 공도 무능력자긴한데.. 29번은 1분컷이었는데 27번이 공간지각능력이 부족해서 그런가 작도가 힘드네요..
선분BC의 중점을 점M이라 했을때 각AMD가 수직나오는것만 밝히면 문제 금방 풀려요 선분DH가 1이니깐 삼각형 DMH에서 각 DMH가 특수각 30도가 되기때문에 평면 ABC와 평면a와이루는 각도 합이 90도가 되거든요 그 후에 넓이/넓이로 이면각
다 맞게 말씀하셨는데, 이 경우 삼수선의 정리로 깔끔하게 풀립니다
ADH와 AHM이 같은 평면이라는 걸 알아차렸다면 교선, 수선이 바로 보여요