함수 그리는 게 익숙해야 합니다
게시글 주소: https://orbi.kr/00066932400
2~3 등급 분들을 과외하면서 느낀 건,
본인의 풀이가 수식에 치우친 분들이 많다는 거였어요.
그래서 이번 칼럼을 준비했습니다.
"이럴 때 그려라" 와 같은 말을 하는 건 아니구요,
(애초에 그런 분류는 잘못된 접근이라 생각합니다.)
함수를 그림으로 편하게 다루는 모습을 직접 보여드릴 겁니다.
그리고 이걸 하기에 딱 좋은 기출 문제가 있어요.
칼럼 주제에 맞게 문제의 일부만 가져오겠습니다
위 조건을 가지고 f(x)를 그려야 하는 상황입니다.
수식적으로 열심히 미분하고 이거저거 해도 괜찮지만...
사실 그림 몇 개만 슥슥 그려서 끝낼 수 있어요.
일단 왼쪽부터 그려봅시다.
즉 얘를 그려야 하는데, x가 절댓값 밖에 있는 게 거슬리네요.
이걸 그리라면 편하게 그릴텐데 말이죠.
이때, 삼차함수의 절댓값함수를 그린 뒤에 x를 곱해야겠다고 생각하지 마세요.
절댓값은 무시한 채로 일단
이 놈을 그린 뒤에, 부호만 따로 처리해주는겁니다.
이렇게요.
삼차함수가 x가 0보다 작은 곳에서만 뒤집어졌으니까,
전체 함수도 x가 0보다 작은 곳에서만 뒤집어주면 되겠죠.
지금까지 왼쪽 함수를 그렸습니다.
우린 f(x)가 궁금한거니까 양변을 미분 해야겠죠?
얘를 미분해줄 때 역시 그림만 보고 바로 도함수를 그릴 수 있습니다.
이렇게 되겠죠.
0, a, 2a 에서 x축 지나는 삼차함수 그린 뒤에 x가 음수인 부분만 뒤집어 준 셈입니다.
이걸 미분해서 아는 게 아니라, 그림 보면서 바로 그리는거에요.
이때 이 도함수의 최고차항 계수는 4가 됨을 잊지 마세요.
사차함수 미분했으니 계수로 4가 튀어나왔겠죠.
지금 그린 이 함수가
이 놈입니다. 왜냐면...
여기서 우항을 미분하면 (a-x) f(x)가 나오니까요.
그럼 아래 그림에서 (a-x)를 나눠준 그림이 f(x)겠죠.
(a-x)를 나누는게 헷갈리신다면,
(x-a)를 나눈 다음에, -부호 처리(함수를 x축 대칭) 해도 되겠습니다.
저는 방금 말한 방법으로 보여드릴게요.
우선 x-a로 나누면
이렇게 되겠죠.
이제 뒤집을게요.
드디어 f(x)를 그렸습니다.
이런 식으로 그림을 통해 바로 미분을 하고, 인수를 나누고, 절댓값 처리를 하고, 적분도 할 수 있어요.
익숙해진다면 정말 빨라질 겁니다.
가벼운 예제 하나 보여드릴게요.
이 삼차함수를 미분해야 합니다.
전개를 한다면 너무 오래걸리겠죠.
곱미분도 은근 귀찮습니다.
도함수를 곱의 형태로 깔끔하게 쓰지도 못하구요.
이때 그림을 이용하는겁니다.
도함수가 바로 보이죠.
가 되겠습니다.
오늘 칼럼은 여기까지입니다.
아까 푼 기출문항 원본 사진과 함께 끝내겠습니다.
답은 4입니다.
#무민
0 XDK (+1,000)
-
1,000
-
현역들에게 폐관수련으로 수학 고정 100을 만들어 N수의 무서움을 보여주겠습니다.
-
1컷 47은 진짜 에바같은데 45진짜로안되나
-
Who's Sally
-
언매만좀열심히읽음 사설커하89점 수능91점 캬캬
-
답 뭐해서 틀리심? 전 73했음
-
그럴 일은 없고 47이 정배라는건 아는데 48이 2컷이면 지구 멸망하는 정도임?
-
동시에 건강 걱정 듬
-
어떻게 아는 거냐?
-
어? 그남들은 임신 고통도 모르면서 맨날 애만 낳으래 우리가 애낳는 기계인줄 아나...
-
사설 풀다보면 쓸데없이 사소한 포인트에 집착하게 됨
-
수능 얘기) 수능 준비할땐 금연하는게 좃뇨
-
작수 사문도 풀면서 음 적당하거나 좀 쉽네 했었는데 의문사 왕창하고 39점 3등급...
-
루비는 빨간색 뱃지가 어울리네
-
46은 너무 적고 45는 너무 많은 느낌 그래서 45점 백분위 95 아닐까 예상...
-
4수는 선택 13
3수까지 했고 이번에도 개같이 망해서 4수할까 생각중임 현역 때는 공부 안 해서...
-
다들 그보다 후하게 예측해서 좀 인지부조화 걸렸음..
-
사설3에서 수능1 사설1에서 수능3 내가봐도 좀 이상함ㅋㅋㅋㅋ
-
국어 수학 2~3정도 영어 사문은 1~2정도(거의1) 화학에서 사탐런 하려고 하는데...
-
제일 중요한 건 5
집중력임
-
수능이 끝나고, 각 입시기관별 분석이 쏟아져 나오고 있습니다. 선택과목이 나뉘고,...
-
J는 검사인 Y를 꼬셔서 #~#
-
화1물1=동사세사 12
앞으로 과탐계의 쌍사는 화1물1이다 이상.
-
집밖은 위험하지만 그래도 노력해보기로 했음!
-
건동홍이 가능하구나 과목은 화작확통생윤사문이었음
-
휴 시간 옮겼다 4
점심시간 확보 완 옮겼더니 나타난 십자가??? 오...
-
쓰니들아 1
뭐해
-
기술:엔트로피 부호화 인문:가능세계 과학:개체성 주제통합:바나나 경제:오버슈팅...
-
내 이야기 아닌줄 알았는데 올해 사설 포함 모든 시험 중 수능을 제일 잘봄 이감...
-
ㅠㅠ
-
한 번 포텐 터지면 이만큼의 효자 과목이 없는데 그 포텐 터지는 시기가 수학처럼...
-
날이 너무 춥다
-
아로하 들을 때마다 감탄함 게이아님
-
그냥 주인공이 스쿠나 먹어서 개쌔진다음에 저주들 패는 애니같은데 이게 뭔재미지
-
전전 가려면 둘중에 어디로 가야함??
-
ㄹㅇ 4년만에 하니까 운동 다이어트>>>>>>게임임ㅋㅋ 운동과식단으로살을빼보자
-
올해 막판에 상상 국바 월례등등 엄없회차 폼 비정상적으로 좋길래 잔뜩기대하고...
-
난지금약자인데 2
노약자석에앉고싶다
-
날짜만나오고 시간이 안나와요
-
ㅈㄱㄴ
-
마이크로스트레티지 2배 롱 들어갔다가 뭔가 쎄해서 바로 나왔는데 자고...
-
둘 중 어디 입시가 빡셀까요? 진로는 어디가 더 좋을까요?
-
일단 기하를 고르는 가장 큰 이유는 공부 조금하고 날로 먹기 위해서임 (뇌피셜)...
-
20,21살의 풋풋함은 사라지고 예뻐보이고 싶어서 대부분 성형이나 과한 화장으로...
-
지하철타고 편도 15분인데 한번더 하라는 신의 계시인가
-
그남들아 ㅋㅋ 동덕여대는 해방되지않는다 익이 ㅋㅋ 14
어그로 ㅈㅅ 이성적이면 동홍 낮은과 ㄱㄴ?
-
원래 만표는 23페이지 난이도로 결정되는데 중위권 학생들이 23페이지를 얼마나 잘...
-
예비 고3이고 생지런한 사람인데요 내신베이스(마더텅, 수특 한바퀴)이고 유전문제...
-
[이동훈t] 2026 이동훈 기출 교사경 편 예판 시작 ! 5
2026 이동훈 기출 https://atom.ac/books/12829 안녕하세요....
오
역시
안녕하세요 잘 보고 있습니다
혹시 (x-a)로 나눠서 그래프가 어떻게 바로 나온건가요? 중간 과정을 모르겠습니다 ㅜㅜ
감사합니다
그냥 머릿속으로 4x(x-a)(x-2a)를 떠올리고 나눠서 0, 2a를 근으로 갖는 이차함수를 바로 그리신건가요? 아님 이 과정을 안 거치고도 그릴 수 있는 방법이 있는건가요?
말씀하신게 맞습니다.
다만 조금만 더 시각적으로 표현해보자면
인수를 나눈다는 것을, 근을 하나를 빼버리는걸로 인식해주는겁니다
그래서 남은 근인 0, 2a만 지나는 이차함수를 바로 그리는것이죠
답변 감사합니다 :)
와 진짜 미쳤네요 풀이가,,,,
잘 읽었습니다! 이런 칼럼 앞으로 자주 써주시면 감사하겠습니다 ㅜㅜㅜ
goat..
안녕하세요 정말 좋은 글 감사합니다 그래프 상으로 3차함수를 (x-a)로 나누었을 때 x가 0보다 작은 부분이 x축에 대칭으로 뒤집히는 것이 이해가 힘들어 댓글 남겨봅니다 일반적인 삼차함수 상으로는 함수값이 0보다 작아야하는 부분이지만 특수하게 x축과 대칭인 상태이므로 (x-a) 로 나뉘어 생긴 이차함수 마저도 이 부분은 일반적인 이차함수와 반대로 x축과 대칭이어야 한다고 이해했는데 맞는 생각인가요? 혹 아니라면 조금만 자세히 설명해주실 수 있으실까요?
x-a는 x가 a보다 작을 때 음수의 값을 가집니다.
따라서 x-a를 나눠버리면, 음수로 나눠버리는 셈이기 때문에
x가 a보다 작은 곳에서는 부호가 뒤집혀버릴 겁니다.
즉 x축보다 위에 있던 놈이 x축 아래로 가야 하죠
정말 감사합니다
신