극한 계산 때 주의할 점
게시글 주소: https://orbi.kr/00066464692
안녕하세요. 여기서 이런 칼럼글은 어째 처음 써 보는 것 같아 시작을 뭘로 해야 할지 애매하네요...
극한 문제를 풀 때 여러 가지 편법이 있죠. 로피탈이라던지 테일러 급수라던지...
이런 방법을 쓸 때에는 다 전제조건이 있어서 헷갈린다거나, 아니면 이게 교육과정 밖이라서 쓰기 싫다거나 하는 이유로 순수하게 극한만으로 풀려는 분들도 요즘 많이 보입니다. 좋은 학습방법이죠.
다만 순수하게 극한만으로 풀 때에는 여러 주의할 부분이 있습니다.
1. 극한 계산을 할 때에는 식 전체를 한 번에 보내자.
잘못된 예시를 몇 개 들고 와 보겠습니다.
이 값이 e로 수렴한다는 것은 자명합니다. 그런데 밑에 있는 x를 먼저 0으로 보내고 지수를 0으로 보낸다면 어떻게 될까요?
밑의 x를 먼저 0으로 보내면 밑은 1이 될 것입니다. 거기다 1/0=무한대 제곱을 해 봤자 1이겠죠.
또 밑변의 길이가 1인 이등변삼각형의 높이를 계산한다고 해 봅시다.
높이를 n이라 두면 빗변의 길이는 루트(n^2+1)이겠죠. 빗변과 밑변 사이의 각을 세타라 하면 코사인법칙에 의해 다음 식이 성립합니다.
여기서 세타를 0으로 수렴시키면 어떻게 될까요?
단순히 세타만 0으로 수렴시키면 3/4 = 0이라는 이상한 식이 되어버립니다. 여기서 문제는 n이 세타에, 혹은 세타가 n에 종속된 변수라는 거죠.
n과 세타는 위의 관계식으로 묶여 있습니다. 따라서 세타가 0으로 가면 자연스럽게 n도 0으로 가게 되는 거죠.
이를 무시하고 그냥 한 변수만 수렴시켜 버리면 위와 같은 오류가 발생하게 됩니다.
2. 우리가 알고 있는 극한값을 무지성으로 대입하지 말자.
이건 위와 연결되는 내용입니다.
이것은 너무도 유명해서 다들 외우고 쓸 겁니다. 그리고 우리는 테일러를 좋든 싫든 조금은 맛보고 문제를 풀어봤죠.
그래서 위의 식이 포함된 식에서 우리는 종종
를 별 생각 없이 대입하게 됩니다.
그런데 이게 대부분의 경우 옳지만 항상 옳지는 않죠. 예를 들자면 아까 제가 답해준 글에서의 문제가 있겠네요.
여기서 tan x를 x로 단순 치환하면 위아래를 x로 나눠서 (1-1)/x^2로 바꿀 수 있겠네요. 그런데 이렇게 풀면 분자 0, 분모 0인데 더 이상 어떻게 바꿀 수도 없습니다. 잘못된 풀이이죠.
저 식은 사실 정규 교육과정 내에서 어떻게 풀긴 상당히 까다롭습니다. 0/0꼴이므로 로피탈을 반복 적용해서 풀던가, 아니면 테일러 급수의 3차항까지 근사해서 1/3이라는 답이 나옵니다.
질문하신 분은
까지 변형한 뒤 위아래를 x로 약분했죠. 여기서 문제가 생깁니다.
2tan x/2는 단순히 근사하면 x가 되지만 이걸 x로 취급해서 분자를 x로 묶어도 된다는 것은 아닙니다. 이건 위에서 이야기했던 특정 항만 먼저 수렴시키면 안된다는 것에 어긋나는 거죠.
이 식을 로피탈, 테일러 급수 없이 푸는 방법은 다음과 같습니다. 이거 말고도 다른 풀이가 있을 수 있지만 전 모르겠네요...
상당히 접근법이 어렵습니다... 네.
그래서 이 문제는 테일러 급수 3차근사식을 통한 접근을 추천드립니다. 로피탈도 사실 3번이나 써야 해서 상당히 더럽거든요.
여기까지 생각나는 대로 끄적여봤네요.
사실 저는 반쯤 무지성으로 테일러 급수를 대입해서 푸는 편입니다. 분모 분자 차수 비교해서 거기에 맞는 수준까지 대입하는 방식으로요. 물론 테일러 급수 이용하는게 더 복잡한 경우도 많고 해서 일반적인 풀이 기법도 연습하지많요.
조금 길어졌네요. 부족한 글 봐주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
드릴드같은거 사서 조금씩 풀어볼까
-
오티 끄읕 0
정말 즐거운 3일이었네요 다시 만날 날을 기다리며…
-
근데 거기다가 무슨 "주변 분들의 응원 덕분에 합격할 수 있었습니다!...
-
16도 비빔면ㅋㅋㅋ
-
안녕하세요! 저는 고등학교 2학년 때 고등학교를 자퇴하고 현역 나이에 정시로...
-
동갑이라 말 편하게 해도 된다고 햇늗데 선배 얼굴 제대로 안 보고 말 놓는 건...
-
아 너무 귀찮았다 메가는 아직 아니죠?
-
꼭 N제 순서를 난이도순으로 할 필요가 없다고 봐요 전 드릴 문해전 풀고 슬럼프...
-
1학기 시간표 7
-
N제는 푸는게 좋나용 13
수학 지금 쎈 다 하고 자이스토리 할까말깐데 N제? 뉴런? 이런거는 난이도가...
-
사탐강사 추천 0
생윤 사문or 쌍윤할건데 이지영쌤하고 임정환쌤중 장단점 알려주시고 추천해주세요...
-
2주 뒤에 뉴런 시냅스 다 끝나면 시작할 예정이지만 이것저것 사는김에 미리...
-
자기 방법론으로 공부한 결과가 4-5등급이면서 자기보다 훨 공부 잘하는 사람의...
-
[단독] “트럼프 폭풍 韓 첫 직격”…알루미늄 제품에 관세 85% 때린다 4
中 원자재 사용 우회수출 판단 韓 제품 모두에 중국 관세 적용 ‘중국 하청기지’...
-
김승리 허슬 3
tim살때 허슬테스트도 사야되나요?
-
개학앞두고 띰14까지 2회독 후루룩 함 1회독: 인강 본책문제 시냅스 2회독:...
-
제 취향은 닝닝 민지 오해원
-
난 바보임 9
뻥임뇨
-
반수생 0
제가 작수 생윤 사문했는데 작년엔 이지영쌤 들었습니다 이번엔 임정환쌤 들어보려고...
-
?
-
그렇게 정했음
-
근데 닉값해서 못바꿈
-
위니비니 젤리 왜이렇게 맛있음? 신맛 나는 젤리 최고임
-
1. 인증 안하기 2. 뻘글 안쓰기 3. 공부 잘하기
-
광고모델 비싼값 주고 고용하지말고 책값이나 내리고 강사들 업무부담이나 내렸으면...
-
아힘드러 0
하 그냥 수능공부나 해야겠다진짜 진짜사람좀만있으니까 리안드리악포유성메자이풀스택티모버섯임
-
내 여친 5
진짜 결혼하고 싶다
-
둘이 시비붙어서 말싸움하게되면 누가 이길까
-
독서 0
유대종 + 국정원 어떤가요?
-
긁? 0
긁?
-
니 맘에 비밀번호 눌러 열고싶지만
-
최저 맞추기 어렵나요..? 무조건 1 아님 2 해야하는데 하나는 사문 할거에요 생지...
-
어떤강사의 어떤강의 추천하시는거 있나요???
-
대학교에서 정시보다 수시를 선호하는 이유가 있긴 한듯 3
수시는 5광탈로 온 경우 빼면 대체로 학교에 충성심이 높은데 정시는 반수할 생각...
-
제 잡담 꺼주세요
-
넵
-
하
-
버스에 키 180중반 정도에 떡대있고 가르마펌한 존잘남 있었는데 지나가다가 슬쩍...
-
무물보 12
-
에타에 스터디그룹원 모으는 글 올리는 거 별로일까요? 1
학교가 그다지 명문대가 아니라 노는 분위기에 휩쓸릴까봐 도서관 스터디룸에서 시험공부...
-
기차떠나간당 0
부지런행
-
국어 인강 들어본적 없고 따로 뭐 하지도 않았어여. 그냥 방학동안 간쓸개만 벅벅...
-
토할거같고 현기증나서 기절할뻔했음 비유가 아니라 진심으로.. 저는...
-
오르비 4일차 2
배운거라곤 …정신에 해롭다
-
당연함 남고임
-
10주차 갑자기 합류해서 내일 수업 책이 오늘 배송왔는데 미리 풀어놓고...
-
구해요
굿굿
이해가 잘 안되는데요, 왜 저 4L에서 2x는 x로 바뀌고 바로 밑에서 3L로 바뀌고 x가 tanx로 바뀌는건가요?
아 오타냈네요... 지적 감사합니다! 수정하겠습니다!
3L은 4L에서 왼쪽 L을 뺀 거에요
평균값 정리로 마지막거 풀수 있어요