범위를 자연수에서 양수 전체로 확장해볼게요. 등차수열은 직선의 일부이고, 등비수열의 공비가 양수이면 그냥 지수함수죠. (음수이면 이러한 확장이 불가능합니다) 그리고 둘은 어떤 경우에도 두 개 이상의 교점을 가질 수 없습니다. 따라서 등비수열의 공비는 음수여야 합니다. (0인 경우는 자명히 안 됨)
c1 - 2c2 + c3를 계산하면 d(k1+k3-2k2) = -1입니다. (조건에 의해 d>0)
즉, k1 + k3 < 2k2를 알 수 있습니다.
그러면 가능한 k1, k2, k3의 경우는 딱 세 가지 뿐입니다 : (1, 3, 4), (1, 4, 5), (2, 4, 5)
이제 k1 > 1임을 보이겠습니다.
만약 k1 = 1 이면, b_n의 초항이 양수이므로 a 또한 양수입니다.
댓글을 참고하여 마찬가지로 해석적 확장을 해보면, 이 경우에도 a_n=b_n이 두 개보다 많은 해를 가질 수 없습니다.
따라서 k1=2, k2=4, k3=5이고, 잘 계산해보면 (댓글 참조) a = -11/3. b = 16/3이어서 답은 5번입니다.
어우 문자 울렁증
제발 도와주세요 저 머리 깨져요
또 공부하십니까 goat...
저 제발 도와주세요
일단 머리부터 말리고...
무슨 교재인가여
자 시작합니다
우선 등비수열의 공비가ㅏ 양수일 때와 음수일 때를 구분
자연수 조건이니가..
(확통도 아니고 이런걸..?)
124 125
134 135
145 이 5가지 를 각 case 에서 판단
총 10번..?
양수 일 때 case 구분- 안되니까
공비가 음수 인 걸로 넘어감
-문제 설계 이거에서 되도록 했을 거임
등비수열 공비 양수일 때 그래프랑
음수 일때 그래프를 그려서 시각적으로 편하게 보는 것을 추천드림
자기 전이라 풀이가 좀 부정확하거나 돌아가는 방법일 지도..
그래프 그려봐요
직선과 지수함수의 교점 개수가 3개 안됨
범위를 자연수에서 양수 전체로 확장해볼게요. 등차수열은 직선의 일부이고, 등비수열의 공비가 양수이면 그냥 지수함수죠. (음수이면 이러한 확장이 불가능합니다) 그리고 둘은 어떤 경우에도 두 개 이상의 교점을 가질 수 없습니다. 따라서 등비수열의 공비는 음수여야 합니다. (0인 경우는 자명히 안 됨)
이런 방식으로 푸는 기법을 해석적 확장이라 부릅니다. 정의역의 범위를 기존보다 늘린 후에도 교점의 개수가 2개 이하라면, 정의역의 범위가 더 좁은 원래 두 수열의 교점은 반드시 2개 이하겠죠.
심심하니 문제도 풀어드리겠습니다.
a_n = d(n-1) + a라고 놔보죠.
c1 - 2c2 + c3를 계산하면 d(k1+k3-2k2) = -1입니다. (조건에 의해 d>0)
즉, k1 + k3 < 2k2를 알 수 있습니다.
그러면 가능한 k1, k2, k3의 경우는 딱 세 가지 뿐입니다 : (1, 3, 4), (1, 4, 5), (2, 4, 5)
이제 k1 > 1임을 보이겠습니다.
만약 k1 = 1 이면, b_n의 초항이 양수이므로 a 또한 양수입니다.
댓글을 참고하여 마찬가지로 해석적 확장을 해보면, 이 경우에도 a_n=b_n이 두 개보다 많은 해를 가질 수 없습니다.
따라서 k1=2, k2=4, k3=5이고, 잘 계산해보면 (댓글 참조) a = -11/3. b = 16/3이어서 답은 5번입니다.
저 선생님 너무 감사한데 제가 지금 자야해서 조금 염치 없지만 답변 남겨주시면 내일 정말 꼼꼼히 볼게요!
아니에요^^ 재미있는 문제 가져와 주셔서 감사합니다! 읽어보고 궁금한 거 있으시면 편하게 댓글 달아주세요.
[해석적 확장을 활용한 k1=1 모순 보충설명]
k1 = 1이면 a_n은 언제나 양수인 수열, 즉 양수열입니다.
따라서 a_n=b_n인 n에 대하여 b_n >0이고, n은 항상 홀수여야 합니다.
이제 a_n = d(n-1) + a, b_n = br^(n-1)로 두겠습니다.
그리고 실수 전체를 정의역으로 갖는 함수 a(x) = d(x-1) + a, b(x) = b|r|^(x-1)을 정의하겠습니다.
그럼 모든 홀수 n에 대하여 a_n = a(n), b_n = b(n)이므로, a_n = b_n의 해집합은 a(x) = b(x)의 해집합에 포함됩니다.
그런데 a(x) = b(x)는 최대 두개의 해를 갖습니다. (그래프를 그리든, 엄밀하게 증명하려면 볼록성을 조사하든..)
따라서 k1 = 1일 수 없습니다.
[계산 과정]
d(k1+k3-2k2) = -1 계산하면 d=1.
a_n = b_n 계산하면
(1) a+1 = br
(2) a+3 = br^3
(3) a+4 = br^4
(1)-(2) : 2 = b(r^3-r)
(3)-(2) : 1 = b(r^4-r^3)
둘을 나눠서 소거하고 계산하면 (r이 음수임을 고려할 때) r = -1/2.
차례차례 대입해서 연산하면 a, b 나옵니다!
공비가 양수일때 네모칸에 해당하는 조건을 만족하지 못하는것 같네요, ak2 기준으로 좌우 생각해보시면 감 잡히실듯? 그래서 공비는 양수인게 불가능하므로 공비가 음수라는 방식으로 접근해나가는 귀류법 풀이로 도출하는 것 같아요,