벡터를 활용한 2차원 등가속도 운동 풀이 (1) 중력 끄기
게시글 주소: https://orbi.kr/00066097816
말출까지 시간 드럽게 안가네요. 심심하니 물리2 칼럼을 써볼게요.
들어가기에 앞서, 2차원 등가속도 운동 파트에서 기본적인 풀이은 '평균 속도를 활용한 풀이', '등가속도 운동방정식을 활용한 풀이'입니다. 벡터 풀이를 잘만 쓰면 평균 속도 풀이보다 빠르게 문제를 풀 순 있지만, 기본적으로 평균 속도 풀이법을 통해 문제를 풀 줄 아는 상태여야 합니다. 따라서 3등급 이하는 스킬을 익히되, 위에서 언급한 기본 풀이로도 꼭 문제를 풀어 보셨으면 합니다. 벡터 풀이법은 특수한 상황에서만 유용하게 쓰이거든요.
일단 벡터 풀이법을 익히기 전에 여러분들은 '중력 끄기' 스킬을 익히셔야 합니다.
'가속도 끄기'로도 불리는 이 풀이는 상황만 맞아떨어지면 복잡해 보이는 문제를 눈풀로 3초컷 낼 수 있는 유용한 스킬입니다. 문제를 보면서 설명할게요. 따끈따끈한 24수능 기출입니다.
해설도 보죠.
풀이를 보면 아시듯이 13번 문제는 정석적으로 풀어도 어려운 문제는 아닙니다.
먼저 B의 수평 이동 거리를 통한 t에 대한 식을 구합니다.
이후 A에 대한 등가속도 운동방정식, B에 대한 등가속도 운동방정식 써서 1/2gt^2이 똑같으므로 소거해서 답을 구해내는 풀이이죠. 이렇게 풀어도 한 30초 안에 풀리니까 괜찮죠.
하지만 중력 끄기를 쓰면 이 문제는 눈풀로 3초 컷이 가능합니다.
저 직각삼각형에서 tan(theta) = 2는 바로 보이므로, 답 찍고 넘어갈 수 있는 거죠.
해설을 하자면, A와 B는 운동 시작/종료 시간이 같습니다. 받는 가속도의 크기와 방향 또한 같죠. 그렇게 되면 A와 B가 받는 가속도 벡터가 동일하게 됩니다. 저희가 관심 있는 건 A와 B가 만났다는 사실이므로, 중력에 의한 영향은 A와 B의 의 상대적인 위치 관계에 영향을 주지 않는다는 사실을 알 수 있습니다. 당연한 거죠? 동일한 방향으로 똑같은 거리만큼 이동했는데 상대적인 위치가 변할 리가 없잖아요. 그래서 중력이 꺼졌다고 가정하고 저렇게 A와 B가 등속 직선 운동해서 만났다고 가정합니다. 이때 수평/수직 이동 거리 간의 비율을 구해서 theta를 구하는 겁니다.
쉽게 말해서, 위 풀이에서 언급된 1/2gt^2이 같다는 걸 미리 알고 들어가는 겁니다. 그래서 '어차피 소거될 테니까 계산하지 말고 그냥 등속 직선 운동처럼 풀자!'라고 요약할 수 있겠네요.
여러분들이 중력 끄기 스킬을 적용할 때는, 세 가지 조건을 만족시키면 쓸 수 있습니다.
1. 물체 간 상대적인 위치에만 관심이 있는가
※ 만약 실제 위치 또한 구해야 한다면 쓰시면 안됩니다.
2. 두 물체의 가속도가 크기, 방향까지 전부 같은가.
※ 중력이면 뭐 당연히 같은데, 질량이 다르고 힘이 같다던지 훼이크를 주는 경우가 있습니다. 이 경우 심화 풀이는 다음편에 다루도록 하겠습니다.)
3. 물체가 운동하기 시작/종료한 시각이 같은가
이것까지 같아야 가속도를 통해 이동한 거리가 같겠죠?
이 세 조건을 만족시키면, 위와 같이 중끄 스킬을 적용해서 문제 풀이를 빠르게 할 수 있습니다. 다만 조건이 꽤나 한정적이죠? 그래도 잊을 만하면 자주 등장하는 상황이니 익혀 두면 두고두고 써먹을 수 있습니다. 올해 수능도 이걸로 시간 톡톡히 아꼈고요.
다음 편에서 소개드릴 벡터 풀이법은, 좀 더 확장적으로 쓸 수 있는 중력 끄기 스킬입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하 먼가 이번 입시 실패한 사람 1년간의 글목록 보면 좀 슬프네 0
1년간의 입시공부->수능->진학사원서질->추합대기 모든 과정이 한눈에 보이는게 그...
-
응급실 고칠게 the name 그대를 사랑하는 10가지 이유 천상연 바보에게 바보가...
-
나를 잊지말아줘 ㅜㅜ
-
어느날 말없이 떠나간대도 그뒷모 습까지도 사랑할래에
-
재밋겟다
-
다 성격보고 도망침
-
도화지가 없어도 0
그림을 그린다
-
무섭다
-
난 잠시 그녈지켜줄뿐야 아무것도 바라는 것 없기에 그걸로도 감사해 워어
-
오르비 잘 자! 7
좋은 꿈 꾸기
-
3수 후 재수보단 좋은 성적을 얻었고 하지도 않았던 표본분석 매일 진학사 확인을...
-
근데 안자는 것 같음
-
와 역시 넘사www.youtube.com/shorts/3zwuOxVQUwE
-
역시 달리기선수는 다르다 이건가
-
https://orbi.kr/00016460498...
-
헤드셋 꺼놧다가 깜빡햇다 ㅋㅋ.
-
보컬 학원 다니기 본인 2년 좀 넘게 배우고 바리톤 이 새낀 고음 뚫기 존나...
-
266일금방이지 3
응
-
뭐가 더 나앗을지 모르겟다, 달리기로 멀 엮으려하면 다 별로다
-
쌩라이브는 대부분이 한음 내려서 부르던데 그럼 나도 노래방에서 2키 내려도 되는거자나
-
아직도 안 갓다 레전드 게으름
-
mnm 맛잇다 0
나의 아침
-
예전에 보낸거지우려는데..
-
셀레스티얼 > 사평우 > 어피니티 > 심심한 > 달리기선수
-
아까분명 싸이버거에소떡소떡에초밥먹고싶다썻는데 동태탕에 흰쌀밥먹고싶더니 이젠 레몬아이스티 마시고 싶음
-
정말 짜릿하다카피 닌자 셀레스티얼
-
해봐야겠다 버프를 얼마나 한거야
-
오르비하기도 바쁘다
-
해뜨고 봐요-!
-
닉변 12일 0
기다리기 힘들군
-
ㄷㄷ
-
모두 거짓이겟죠
-
최근에 깨달은건데 마지막에 대입해야할때 (특히 분수꼴) 조금이라도 막히면 걍...
-
진짜임
-
며칠 전에 꿈에서 16
은하수를 봤는데 도시 야경 위로 높은 빌딩에 조명에 엄청 화려한데 그 위로 은하수가...
-
인강에회의감이듦 4
어카죠
-
ㅇㅈ 4
사진 없는데 왜 클릭
-
전에 중학교때는 비록 친구도 거의 없고 찐따였지만 그냥 맛있는거 먹고 가끔씩...
-
나 1
하하
-
몸이 많이 안 좋구나 16
이제 개학까진 일말곤 나가지 말아야겠다 개학하긴 하려나..
-
4시에 뉴런듣기 0
챔스까지 한 시간
-
8살 때 처음 다닌 피아노학원 원장님이 영재라며 되게 좋아하셨던게 문득 기억나네...
-
ㅈㄱㄴ
-
와 역시 넘사www.youtube.com/shorts/3zwuOxVQUwE
-
아빠카드 써야지 난 슬픈 삼수생이니까 당당하게 사먹을 수 있다
-
뭐야
-
전 봇치 봇치 외모 못 참아
-
저 키워주실 여르비 구함 가정주부하면서 주식으로 돈 벌게요
-
??
-
근데 확실히 살다가 힘들때 기댈 수 있는 누군가가 있다가 없으면 좀 힘들겠다 10
항상 건강하십쇼 제가 비록 가진건 없지만 위로는 조금 합니다
말로만 듣던 중력 OFF ㄷㄷㄷ
‘중력 0배‘
대치동 어둠의 스킬 ON ㄷㄷ
물2는 안했지만 일반물리학 공부할 때 잘 써먹었죠..

아하..!! 이해했습니다 선생님중끄는 ㅇㅈ이지

수능 13번이랑 9모 17번은 10초컷했었죠식에서 소거하는 거랑 또 느낌이 달라서 알아 두면 확실히 유용하긴 한 것 같아요