[칼럼] 이것 모르면 수학 망합니다. 이것은 무엇일까요?
게시글 주소: https://orbi.kr/00065503985
안녕하세요. 어수강 박사(과천 "어수강 수학" 원장)입니다.
블로그 : https://blog.naver.com/math-fish
홈페이지 : https://www.soogangmath.com
오늘은 "모르면 수학 망한다는 OO"에 대해 포스팅 해볼게요.
OO은 무엇일까요?
-힌트 1. 지금은 교육과정이 바뀌었지만, 라떼는 OO 이 중학교 1학년 1학기, 고등학교 1학년 1학기 수학의 첫 번째 단원이었습니다. 첫 번째 단원이었기 때문에 많은 학생들이 "수학의 정석"에서 이 단원만 닳도록 공부했다죠^^;;
-힌트 2. 수학에서 다루는 모든 대상은 "OO "입니다. 때문에 중학교 수학과 고등학교 수학의 첫 번째 단원에서 다루었습니다. ("OO "이 고도의 추상적인 개념이라서 어렵다는 이유로 중학교 수학에서는 삭제, 고등학교 수학에서는 1학년 2학기로 이동했습니다.)
-힌트3. 외대부고 면접에서 수학에서 "OO"이 중요한 이유에 대해서 물어본 적이 있습니다. 거의 모든 학생이 제대로 답하지 못했죠. 제대로 답했다면 합격으로 직행했을 텐데 아쉽습니다.
-힌트4. 조금 과장하면 "OO "은 "ㅁㅁ"와 함께 수학 전체에서 가장 중요한 단원임에도 불구하고, 제대로 가르치는 곳을 본 적이 없습니다. 학생들이 학년이 올라가면서 수학을 어려워 하는 주된 이유 중 하나는 "OO"과 "ㅁㅁ"에 대해 제대로 알지 못하기 때문입니다. (개인적으로 너무 안타까워서 전자책 "서울대 박사가 알려주는 수학의 비밀" 시리즈에서 자세히 다루었습니다. 알고 나면 신세계죠! 그래서 현직에 계신 선생님과 상위권 학생들의 만족도가 매우 높습니다.)
혹시 OO이 무엇인지 아셨나요? 정답이 궁금하다면 스크롤을 내려보세요 :)
.
.
.
.
.
.
정
답
로
딩
중
.
.
.
.
.
.
정답은 "집합"입니다.
"집합"이 "ㅁㅁ"와 함께 수학에서 가장 중요한 단원이라니 정말 의외죠? 지금부터 "집합"이 수학에서 가장 중요한 단원인 이유에 대해 알려 드리겠습니다. 꼭! 끝까지 읽어보세요.
수학에서 "대상이 분명한 모임"을 집합이라고 합니다. 예를 들어 "5 이하의 자연수의 모임"은 집합이고, "빨간 사과의 모임"은 집합이 아닙니다. (사람에 따라 "빨갛다."의 기준이 다를 수 있기 때문입니다.)
하지만 이 정도로 공부한다면 아무 짝에도 쓸모가 없습니다. 이 정도 안다고 공부하는데 도움이 되고, 모른다고 지장이 있을까요?
문제는 대부분의 학생들이 이 정도 수준으로 집합을 공부하고 넘어간다는 것입니다. (대부분 학교나 학원에서 이 정도로 가르치죠 ^^;; 집합을 겨우 걸음마 수준으로 배우니까, 집합이 왜 중요한지, 어떻게 공부해야 하는지 모르는 거죠 ㅠ)
그럼 집합에서 무엇을 알아야 할까요?
제가 집합의 예를 들어볼게요!
자연수, 정수, 유리수, 실수, 복소수, 다항식, 유리식, 무리식, 등식, 방정식, 부등식, 함수, 수열, 행렬
(어떤 대상이 주어지면 그것이 복소수인지 아닌지, 두 복소수가 주어지면 서로 같은지 다른지 분명하게 구분할 수 있기 때문에 "복소수의 모임"은 집합입니다. 마찬가지로 어떤 대상이 주어지면 그것이 다항식인지 아닌지, 두 다항식이 서로 같은지 다른지를 분명하게 구분할 수 있기 때문에 "다항식의 모임"도 집합입니다. 방정식, 부등식, 함수도 마찬가지겠죠?)
위와 같은 대수적 대상(수와 식)만 집합일까요?
점, 직선, 삼각형, 사각형, 평면, 정육면체, 부채꼴, 원, 원기둥, 구, 원뿔
(어떤 대상이 주어지면 삼각형인지 아닌지 분명하게 구분할 수 있고, 두 삼각형이 주어지면 그것이 같은지 다른지 분명하게 구분할 수 있겠죠? 따라서 "삼각형의 모임"은 집합입니다. 마찬가지로 사각형이나 평면, 정육면체, 원 등 기하학적 대상들도 모두 집합이겠죠?)
어떤가요? 이상을 정리하면 다음과 같은 결론을 얻습니다.
"수학에서 다루는 모든 대상은 집합이다!!"
교과서 또는 교재의 목차를 펴신 후에, 공부하는 "대상" 중에 집합이 아닌 것이 있는지 생각해 보셔도 좋습니다. 모든 대상은 "집합"의 "example"일 뿐이죠. 심지어는 "집합의 모임"도 "집합"입니다. 그래서 집합을 가장 먼저 배웠던 것입니다.
중요한 것은 "단순히 '수학에서 다루는 모든 대상은 집합'임을 아는 것"이 아니라 "집합을 어떻게 공부해야 하는지 아는 것"입니다.
수학에서 다루는 모든 대상이 집합이라면? 새로운 대상이 다룰 때, 어떻게 공부해야 할까요? 저는 다음의 두 가지에 신경 써서 공부할 것을 강력하게 권장합니다.
1. 구별법
2. 기존의 집합과 비교&대조
이에 대해 하나씩 자세히 알아볼게요!
[1. 구별법]
: 구별법을 신경 써서 공부해야 하는 첫 번째 이유는 이것이 "공부의 시작"이기 때문입니다. 왜 그런지 함께 생각해 봅시다.
- 주어진 것이 다항식인지 아닌지 구분할 수 없다면?
- 주어진 것이 이차함수인지 아닌지 구분하지 못한다면?
- 주어진 것이 미분가능한 함수인지 아닌지 구분하지 못한다면?
아마도 다항식, 이차함수, 미분가능한 함수의 성질을 제대로 공부할 수 없을 것입니다. 다항식의 연산과 성질에 대해 공부하기 위한 첫 단계는 다항식과 아닌 것을 구분하는 것입니다. 마찬가지로 이차함수의 성질에 대해 공부하기 위한 첫 단계는 이차함수와 아닌 것을 구분하는 것입니다.
그래서 중학교에서는 "구별법"을 알고 있는지 다음과 같이 직접 묻는 문제가 시험에 출제가 되기도 합니다.
- 다음 중 다항식 아닌 것은?
- 다음 중 일차방정식이 아닌 것은?
- 다음 중 이차방정식은?
- 다음 중 이차함수가 아닌 것은?
하지만 고등학교에서는 위와 같이 유치하게 "구별법"을 알고 있는지 직접 묻지 않습니다. 그렇다면 고등학교 수학에서 구별법이 중요한 이유는 무엇일까요?
예를 들어 볼게요. 여러분이 이차방정식의 성질에 대해서 공부하고, 다음의 [문제1]을 푼다고 생각해 봅시다.
(학생이라면 아래의 설명을 보기 전에 먼저 [문제1]을 직접 풀어 보세요!)
[문제1]을 처음 접한 대부분의 학생들은 "이차방정식의 근의 판별식"을 이용해서 다음과 같이 풉니다.
하지만 이는 틀린 풀이입니다. 왜 그럴까요?
.
.
.
.
.
.
정
답
로
딩
중
.
.
.
.
.
.
[문제1]의 풀이에 사용한 성질은 "이차방정식의 근의 판별식"입니다. 즉, 위의 풀이는 이차방정식의 성질을 사용한 풀이입니다. 하지만 [문제1]에서 k=-2인 경우, 주어진 방정식은 이차방정식이 아니라 일차방정식이 됩니다. 일차방정식을 푸는데 이차방정식의 성질을 사용한다면 어떻게 될까요? 당연히 틀린 풀이가 됩니다.
[문제1]의 풀이가 틀린 이유는 주어진 식이 이차방정식인지 아닌지 확인하지도 않고, "이차방정식의 근의 판별식"을 사용했기 때문입니다.
이처럼 고등학교 수학에서는 중학교에서처럼 "구별법"을 아는지 직접 묻는 문제를 출제하지는 않습니다. 고등학교에서는 [문제1]과 같이 문제에 주어진 대상이 어떤 집합의 원소인지 확인하고, 이에 대해 배운 성질을 정확히 적용할 수 있는지 묻는 문제를 출제합니다. 이때, 구별법에 대해 제대로 공부하지 않은 학생들이 [문제1]을 위의 풀이와 같은 방식으로 틀렸을 때의 반응은 크게 두 가지입니다.
1. 안 풀어봐서 틀렸다.
2. 이건 예외 혹은 고난도 문제다.
위와 같이 진단하면 "문제를 더 많이 풀어야 한다."와 같이 처방하게 됩니다. 안 풀어 본 문제가 없어야 하니까. 예외적인 특수한 문제까지 모두 풀어봐야 하기 때문입니다. 하지만 이는 근본적인 해결책이 아닙니다. 늘 풀던 것과 비슷하지만 조건을 살짝 바꾼 문제가 출제되면? 제대로 풀지 못할 가능성이 매우 높습니다. 때문에 이와 같이 공부하면 고등학교 수학에서 무너지게 됩니다.
하지만 구별법에 초점을 맞추고 공부하면 어떨까요? [문제1]을 위의 풀이와 같이 틀렸을 때,
최고차항의 계수에 문자가 포함되어 있는 경우, 그 문자의 값에 따라 식의 차수가 달라질 수 있다는 것을 배우게 될 것입니다.
이와 같이 공부하면 [문제1]뿐 아니라 (문제의 유형에 관계없이) 최고차항의 계수에 문자가 포함된 식이 나올 때마다 주의를 기울이게 될 것입니다. 따라서 똑같은 실수를 할 가능성이 매우 낮습니다. 이것이 구별법을 신경 써서 공부해야 하는 두 번째 이유입니다.
그러니 안정적인 1등급, 최상위권 대학 진학을 원하는 학생이라면 "구별법"을 신경 써서 공부할 것을 강력하게 권장합니다!
[2. 기존의 집합과 비교&대조]
: 이번에는 새로운 대상(집합)을 공부할 때, 기존의 집합과 비교&대조해서 공부해야 하는 이유에 대해 알아볼게요.
예를 들어 보겠습니다. 고등학교 1학년 때, 복소수를 처음 배웁니다. 선생님께서 복소수에 대해 수업하신 후에 실수의 성질과 똑같은 것만 골라서 시험에 내실까요? 아니면 반대로 실수의 성질과 반대되는 성질들만 시험에 내실까요? 당연히 실수와 복소수를 비교&대조해서 그 성질을 정확히 알고 있는지 묻는 문제를 시험에 출제하실 것입니다.
하지만 시험에 출제 되기 때문에 중요한 것이 아니라, 중요하기 때문에 시험에 출제가 되는 것입니다. 왜 그런지 생각해 볼까요?
수학에서 방정식을 푸는 것이 매우 중요한 문제라는 것에는 이견이 없겠죠? 방정식에 대한 다음 [문제2]를 풀어보세요!
먼저 [문제2]의 1번부터 생각해 볼까요? 1번 방정식은 x=1로 자연수의 집합에서 해를 가집니다. 하지만 2번은 어떤가요?
2번 방정식이 자연수의 집합에서 해를 가지지 않습니다.
아니!! 매우매우 중요한 이 문제를 자연수의 집합에서 풀 수 없다니!!!
수학자들은 이 문제를 해결하기 위해 수의 집합을 "자연수에서 정수로 확장"합니다. 다행히(?) 이 방정식은 정수의 집합에서 해를 가집니다.
만약, 정수가 자연수와 똑같은 성질만 가진다면, 자연수의 집합에서 풀 수 없었던 문제를 정수의 집합에서 푸는 것이 가능할까요? 아마 아닐 것입니다. 따라서 자연수와 정수는 어떤 성질이 같고, 어떤 성질이 다른지, 그리고 그 성질에 의해서 자연수의 집합에서 풀 수 없었던 문제가 정수의 집합에서는 어떻게 풀 수 있게 되는지에 초점을 맞추고 공부해야 합니다. 왜냐하면 이것이 매우 중요한 학습목표이기 때문입니다!!
[문제2]의 3번 방정식은 정수의 집합에서 해를 가지지 않습니다. 매우매우 중요한 방정식이 정수의 집합에서 해를 갖지 않는다면??? 이 문제를 풀기 위해 수를 확장해야 겠죠? 수학자들은 수의 집합을 "정수에서 유리수로 확장"합니다. (유리수의 집합에서 모든 일차방정식은 해를 가집니다. 일차방정식을 해결했다면? 이차방정식으로 넘어가야겠죠?ㅎㅎ)
[문제2]의 4번 방정식은 어떤가요? 유리수의 집합에서 해를 가지지 않죠? 이 문제를 해결하기 위해 수학자들은 수의 집합을 "유리수에서 실수로 확장"합니다. 하지만 여전히(?) 실수의 집합에서 5번 방정식이 해를 가지지 않습니다. 수학자들은 이 문제를 해결하기 위해 수의 집합을 "실수에서 복소수로 확장"합니다.
고등학교 1학년 1학기의 수학 공부를 해본 학생이라면, 복소수에 다음 정리에 관한 문제가 자주 출제된다는 것을 잘 알고 있을 거라 생각합니다.
위 [정리]에 관한 문제가 자주 출제되는 이유는 무엇일까요?
그것은 이 [정리]에 의해서 [문제2]의 5번 방정식이 해결되기 때문입니다. 실수에서는 풀 수 없었던 방정식을 복소수에서 풀 수 있게 되는 성질이니 엄청엄청 중요한 성질이겠죠? 중요하니 시험에 자주 출제되는 것입니다!
실수에서 복소수로 수를 확장하는 이유가 무엇인지, 실수와 복소수는 무엇이 같고 무엇이 다른지, 그리고 어떤 성질에 의해서 어떤 이득(실수에서 복소수로 수를 확장한 이유)이 생기는 지에 대해 공부해야 합니다. 이는 매우 중요한 학습목표이기 때문에 이것을 제대로 알고 있는 묻는 문제가 다양한 형태로 출제 됩니다. 이때, 문제와 그 풀이를 암기하여 기계적으로 푸는 학생이라면 (이것을 제대로 알고 있는지 묻는 문제가) 생소한 형태로 출제되었을 때 크게 당황할 가능성이 높습니다. 하지만 위의 내용을 신경 써서 공부한 학생이라면~ 형태와 관계없이 쉽게 풀 수 있을 것입니다.
안정적인 1등급, 최상위권 대학 진학이 목표라면 신경 써서 공부해야 겠죠? 새로운 대상을 공부할 때, 기존의 집합과 비교&대조해서 공부할 것을 강력하게 권장합니다!
오늘 칼럼에서는 수학에서 가장 중요한 단원임에도 저평가 되어 있는 "집합"에 대해서 알아보았습니다. 다음 칼럼에서는 "집합"과 쌍벽을 이룰 만큼 중요하지만 집합만큼이나 저평가 되어 있는 "ㅁㅁ"에 대해 알아보도록 하겠습니다! 그럼 다음에 또 만나요 :)
PS1. "구별법"에 대한 다양한 예제(고난도 문항 포함)와 해설이 궁금하시면 아래 링크를 클릭해 보세요!
"구별법"만 신경 써서 공부해도 고난도 문제를 쉽게 푸는 경험을 하게 될 거에요!
PS2. 집합에 대한 보다 자세한 설명과 구체적이고 다양한 예시가 궁금하시면 다음의 전자책을 읽어보세요!
"서울대 박사가 알려주는 수학의 비밀 - 첫 번째 비밀 : 집합"
[오늘의 칼럼 요약]
: 수학에서 다루는 모든 대상은 집합이다. 그런데 집합은 대상이 분명한 모임이다. 그러므로 새로운 대상을 공부할 때 (이것도 집합이므로) "구별법"과 "기존의 집합과 비교&대조"하는 것을 신경 써서 공부해야 한다.
블로그 : https://blog.naver.com/math-fish
홈페이지 : https://www.soogangmath.com
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
의미 있없
-
여기서 원점대칭은 어떻게 봐라봐야하나요 삼차함수의 미정계수와 관련 있어보이는데...
-
이승효쌤 입장정리입니다 참고로 저는 댓글알바도 아니고 조교도 아니고 그냥 수학...
-
이승효가 풀이 베꼈다는 게 개쌉소리인 이유를 알아보자.. 7
ㅎㅇ 나다 내가 누구냐고 수학3따리 재수생이다 흑흑 제목이 워딩이 개쎈데 내가...
-
[속보] 국민의힘, 김문수 선출 취소…새벽 4시까지 새 후보 등록신청 접수 4
국민의힘이 김문수 대선 후보의 선출 취소 절차를 완료했다. 동시에 새로운 대선...
-
지금 10도라 나와있는데 원래 5월이 추웠음? 작년 학교축제 4월 중순말인가 했던...
-
4
-
안철수 서울대 교수가 SBS ‘힐링캠프, 기쁘지 아니한가’에 출연해 그 동안의...
-
살아있는 사람 손들어보셈
-
아까 글 올린 노베인데요... 기하를 어떻게 할까 하다가 일단 공간도형파트만...
-
정법 현강 낄까 말까 고민햇는데 올해는 먼가 불안해서 그냥 9모 이후에 다니기로 함
-
20대대선이 진짜 역대급 개병신대선인줄 알았는데 진짜 지금보면 선녀네 21대는...
-
국힘은 이제 민주주의 사회의 공당이라고 봐주기도 부끄럽네 1
중국 공산당이랑 형태 제일 비슷할듯 좆주당보다 기괴해짐
-
근데 국힘 진짜 돌았네 11
저러면 진짜 이재명vs이준석 양자로 가겠는데? 국힘은 소멸할듯
-
얼버기 10
강아지가 방문 긁어서 인남
-
치즈를 매우 좋아한다네요
-
오노추 0
심심하면 노래나 듣고가셈
-
난이도 궁금 왜냐? 오늘 풀러가는데 벌써부터 풀기 싫음^^!
-
작수때 ㄹㅇ 시간 한 50분? 남았는데 13 14 15 20 21 22 27 28...
-
수령까지 기간 얼마걸림
-
주말만 되면 자기 싫음
-
다들 용돈 1
얼마나 받으심? 책값 제외한 값.
-
짜증나
-
으아아악 정상화기원...
-
생활패턴 망가짐 5
잠이 안 온다 ㅠ
-
목 나갔네 5
친구들이랑 파티룸옴
-
이원준 강민철 1
이원준 독서 강민철 문학 이케 들어도 되나요 막 방식이 충돌해서 이상해지고 그러지 않겠됴?
-
10억까지는 할 수 있지 않을까 30대 초에 엑싯을 해서 한 100억을 버는거임..
-
점심을 국밥 짜장면 or 편의점 밖에 못먹어서 서러운 거 빼곤 다 좋은 듯
-
나 순수한건가 10
님들이 귀엽다고하면 나 진짜로 귀엽다고 생각하게되고 님들이 댓글달아주니까 인싸가...
-
화작만 안 틀렸어도 3모 1 5모 2 떴을 텐데...... 그 자료? 문제도 어렵고...
-
잔다 2
르크
-
기출 푼 후에 1. 내가 기출을 얼마나 잘 습득했는지 2. 계산 실수를 잘 잡고...
-
현역 5모 후기 1
탐구만 보면 머리가 안돌아가네요 평소에 물리 모고도 많이 풀어봤는데 왜 이렇게 꼬였을까요..
-
책장 ㅁㅌㅊ? 5
포차코 귀여움
-
각각 난이도가 어떻게 되나요? 드릴이나 어싸같은 문제집이랑 비교했을때요
-
김상훈 문학론 2
지금 박광일 듣고있는데 지금 김상훈 문학론 듣기 시작하기엔 너무 늦었나요..? 아님...
-
그래도 이재명은 못뽑겠다 준스기로 가야하나
-
뭐라해야되냐
-
여행 떠나고 싶다 13
고독을 즐길 줄 아는 사람이 되고 싶다
-
구체적으로 어떤 부분이 쉬웠나요? 전부..? 나는 왜 지금까지 쉽다는 모고는 쉽게...
-
사탐런 고민 1
지금 69수능 지구과학 풀면 40점 정도 나오는데 사문으로 런쳐서 50점 만드는게...
-
사탐 강사 추천 0
사탐은 처음인데, 우선 과목은 사문과 생윤으로 골랐습니다. 사문 -...
-
삼수도 개힘든데 25
그이상은 도대체 어케 하는거임 약간 도의 경지를 넘어선듯
-
잘자요 14
-
3모50점 5모47점인데 중간중간 비는 개념이 보이긴함 더프같은거도 풀어보면...
-
요즘 참 15
요즘이네
-
공통접선인건 알겠는데 x축에 접한다<<이걸 대체 어떻게 써야하는지 모르겠음...
첫번째 댓글의 주인공이 되어보세요.