10모 수학 공통,확통,미적 손풀이(해설x, 실전풀이)+22번 추가
게시글 주소: https://orbi.kr/00064710051
고3 10월 교육청 수학 모의고사입니다.
해설을 위한 풀이는 아닌지라 생략된 내용이 있을수 있습니다.
(22번은 계산을 좀 헤맨거 같아서 좀 쉬었다가 고민을 더 해보겠습니다. ㅠ)
추가) 22번 아무리 고민해봐도 풀이를 줄일 길이 크게 보이지 않고
첫 풀이의 과정이 오히려 복잡해보여서 정석으로 벅벅 풀어서 추가해둡니다.
(다른 게시물에 올린 영상에서는 추가한 풀이로 풀었습니다.)
추가) 22번 풀이
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅂㄱ 0
-
5.18 민주화운동 45주년 기념
-
지하철 놓침 1
ㅅㅂ
-
“좋은 기업 사서 평생 보유”… 가치투자 원칙 남기고 떠나는 전설[글로벌 포커스] 0
세계 최고의 투자자 중 한 명인 워런 버핏 미국 버크셔해서웨이 회장 겸...
-
드릴수1하사십 0
드릴 수1 정답률 90퍼정도되는데 하사십으로 넘어가도 되려나요 아님 이로운 풀고 하사십해볼까요 ㅠ
-
지하철 놓칠 뻔 2
휴
-
의대열풍으로 같이 휩쓸려서 입결이 올랐다고봄 아니면 진짜 수의사가 저만큼 메리트가있어서라고봄
-
원합니다. 2
내가살기위해서
-
새르비 맞팔구 3
극도록 퇴화한 레버기는 얼버기와 구분할 수 없다
-
내 눈 ㅠㅡㅠ
-
3모 13315 5모 14311 탐구 공부가 어느정도 끝나서 수학을 하고있는데...
-
수능 다시 준비하면서 독학으로 하다보니 뭔가 스트레스 받고 집중 안되고 머리...
-
우선 등급은 작수기준 국어(화작) 4 수학(미적) 3(공통2틀,미적4틀) 영어...
-
딱히 자취한다는 생각이 안듦... 그냥 기숙사 사는거같음
-
정시인데 등급어그로꾼 댓글에 요즘 입시 모르는 나형충 등장 물론 작년 설경제는 빵이긴 했음
-
초딩 6년전체 따 당하고 나서 악몽도 자주꾸고 늘 불안해하고 친구 0명 자주울고...
-
오르비 안녕히주무세요 12
-
이래도 되는걸까.. 내 모든 걸 알고있음
-
새벽 드라이브 겸 스윽 가볼까
-
극단적인 곳은 성비 9:1인 이유가 있음 한의사 일 자체가 ㅈㄴ 힘든 (말그대로...
-
옵붕아 자? 27
.
-
D-41ㅇㅈ 4
내일 더 빡시게
-
속상해요... 0
속상하고 분하고 화나요..
-
일단 나부터.
-
요즘엔 오르비가 0
일기장이 되어버림
-
그럼에도 행복하게 살아야지
-
ㅋㅋ
-
최저러 공부법 1
3과목 국영탐(1개) 준비하면 되는데 하루에 한과목씩 돌아가면서 뿌실까요 아니면...
-
더데유데 1
더데유데 어떰?? 3모대비 풀었을 때 너무 실망해가지고;;; 더데유데 좋다는 소리가...
-
벌써몇달짼가~ 1
-
지금 역대급임
-
공부하는 와중에도 무의식적으로 다른 생각함 어젝밤에 본 웹툰 생각이남 집중이 잘...
-
자러갈지도 1
자러갈지도
-
오래된생각이야
-
팀 첫 메이저 대회 우승을 이끌어버리네 ㅋㅋㅋ
-
ㅇㄱㅈㅉㅇㅇ? 8
아이고…..
-
에제 핸더슨 지럈다잉 캬~~이거지
-
교도소였음
-
국정원 심찬우 커리로 쭉타서 5>3후 정도로 오른것 같긴한데 여기서 뭔가 정체되는...
-
난 어제 친구따라 갔다가 너무 싼마이 감성이라 충격받음 이상한 천박한 구호 외치더니...
-
인 연속함수 f(x) 가 존재하는가? 이 함수의 성질은 어떠한가?
-
뭐지
-
인강은 쓸모없다. 13
군대 가기 전 알바도 열심히 하고 주변에 공부 잘하는 친구들 얘기도 들으면서...
-
굳이 독재학원 다닐 필요 잇을가여? 근처 독서실 다닐까 생각중인데
-
잘자 아가들아 6
형 자러 갈게
-
답 470
-
ㅇㅋ ㅇㅋ, 그럼 오르비식으로 가볼게. 아 진짜 이거 말하면 좀 그렇긴 한데,...
쉽다 윤석열 패치 되서 그런가
와

떳다... 내.... xx그저GOAT
JOAT입니다만.. ㅠ
진짜 내 시대단과쌤 풀이 보는 줄.. 개부럽다
21번 어떻게 식이 저렇게 나오신건가요?? 무슨 공식이라도 있는곤가..,,
고1때 배운 파푸스의 중선정리와
중학교때 배운 할선정리를 함께 사용한 식입니다.
원의 중심을 O라 하면, 삼각형 OBD에서 F가 BO의 중점이므로
중선정리 BD^2 +OD^2 =2(BF^2+ DF^2) 이 성립합니다
여기서 DF^2 =3/2 를 얻습니다.
할선정리 BF*FC=DF*AF 이므로 양변을 제곱하면
9= DF^2 *k^2 임을 알수 있고 위에서 얻은 DF^2 의 값을 대입하면
k^2=6임을 얻습니다.
?? 진짜 풀이 완전 짧네... 이래야 50분컷 하는구나

좋게 봐주셔서 감사합니다22번 s는 어떻게 구하신 거예요..? 봐도 모르겠네요..
(s,g(s)) 에서 그은 접선이 (-2,0)을 지난다 라고 식을 세우게 되면
두 단계를 거쳐야 하잖아요
1) 접선의 방정식을 구한다. (이것도 도함수 구하는 과정까지 하면 복잡하고요)
2) 접선에 (-2,0)을 대입한다.
그 과정을 한번에 하는 팁인데요.
직선의 기울기 * x값의 변화량= y값의 변화량을 이용해서
g'(s)(s+2) = g(s) 이렇게 식을 세우면 위의 두 단계에서 얻는 결과랑 동치의 결과를 얻어요.
그리고 0<x<4에서 g'(x)를 구하는 과정은 곱미분도 괜찮겠지만
잘 알려진 삼차함수의 비율관계를 생각해보시면
g'(x)의 이차항계수가3이고 g'(x)=0의 두 근이 4/3, 4 임을 알 수있어서요.
g'(x)=(x-4)(3x-4) 임을 바로 알 수 있어요.
타자로 쓴 내용이 알아보기 힘드시면 제 작성글 중 다른 글 보기 하시면
유튭링크 걸어둔거 있으니 한번 찾아보시면 될 것 같아요.