미적분학의 기본 정리 (FTC) 증명
게시글 주소: https://orbi.kr/00063696681
참고로 FTC는 the fundamental theorem of calculus의 줄임말입니다.
증명해봅시다!
구간 [a, b]를 n개의 구간으로 나누고 각 구간의 경계를 작은 수부터 a, x_1, x_2, x_3, ... , x_(n-2), x_(n-1), b라고 합시다. 고등학교 미적분에서는 구간을 등분하여 구분구적법을 설명하지만, 실제로는 꼭 등분할 필요는 없습니다. 마찬가지로 각 구간의 경계에서의 함숫값을 택할 필요 없이 구간 내의 아무 값이나 골라도 괜찮습니다. 자세한 내용은 각자 미적분학에서 Riemman Sum 찾아봅시다.
여기서 평균값 정리를 이용하면 다음을 얻을 수 있습니다.
이때 F'(x)=f(x)이므로 이를 이용해 앞서 얻은 식을 정리하면
위와 같습니다.
이제 양변에 극한을 걸어주면, 우변의 극한이 수렴할 때 정적분의 정의에 의해
가 됩니다. 물론 우리는 f(x)가 연속함수일 때만을 다루므로 극한은 항상 수렴합니다.
따라서
가 성립함을 증명했습니다. 다음!
구간 [a, b]에서 연속인 함수 f(x)에 대해 함수 g(x)를 위와 같이 정의할 때
가 됨을 증명해봅시다. 편의상 h>0일 때부터 생각해보면
이고 최대 최소 정리에 의해 구간 [x, x+h]에서 f(x)는 최댓값과 최솟값을 갖습니다.
구간 [x, x+h]에서 f(x)가 x=k_1에서 최솟값 m, x=k_2에서 최댓값을 M을 지닌다 할 때 다음이 성립할 것입니다.
이제 각 변에 극한을 걸어주면
에서
이기 때문에 함수의 극한의 성질에 의해 (샌드위치 정리)
가 성립함을 확인할 수 있습니다.
h<0일 때도 같은 방식으로 다루어주면 다음의 결론을 얻습니다.
이때 f(x)가 연속함수이기에 g(x)는 미분 가능한 함수이고 따라서 좌변의 극한이 수렴해 g'(x)=f(x)임을 알 수 있습니다.
0 XDK (+100)
-
100
-
프사 설정하고 싶은데 자꾸 파일이 크다길래 100kb까지 압축했는데도 안되네요...
-
시대인재 수과학 브릿지모의고사와 브릿지전국모의고사중에 시간없을때 둘중 하나만...
-
ㅇㅂㄱ 1
-
5.18 민주화운동 45주년 기념
-
지하철 놓침 2
ㅅㅂ
-
“좋은 기업 사서 평생 보유”… 가치투자 원칙 남기고 떠나는 전설[글로벌 포커스] 0
세계 최고의 투자자 중 한 명인 워런 버핏 미국 버크셔해서웨이 회장 겸...
-
드릴수1하사십 0
드릴 수1 정답률 90퍼정도되는데 하사십으로 넘어가도 되려나요 아님 이로운 풀고 하사십해볼까요 ㅠ
-
지하철 놓칠 뻔 2
휴
-
의대열풍으로 같이 휩쓸려서 입결이 올랐다고봄 아니면 진짜 수의사가 저만큼 메리트가있어서라고봄
-
원합니다. 2
내가살기위해서
-
새르비 맞팔구 3
극도록 퇴화한 레버기는 얼버기와 구분할 수 없다
-
내 눈 ㅠㅡㅠ
-
3모 13315 5모 14311 탐구 공부가 어느정도 끝나서 수학을 하고있는데...
-
수능 다시 준비하면서 독학으로 하다보니 뭔가 스트레스 받고 집중 안되고 머리...
-
우선 등급은 작수기준 국어(화작) 4 수학(미적) 3(공통2틀,미적4틀) 영어...
-
딱히 자취한다는 생각이 안듦... 그냥 기숙사 사는거같음
-
정시인데 등급어그로꾼 댓글에 요즘 입시 모르는 나형충 등장 물론 작년 설경제는 빵이긴 했음
-
초딩 6년전체 따 당하고 나서 악몽도 자주꾸고 늘 불안해하고 친구 0명 자주울고...
-
오르비 안녕히주무세요 12
-
이래도 되는걸까.. 내 모든 걸 알고있음
-
새벽 드라이브 겸 스윽 가볼까
-
극단적인 곳은 성비 9:1인 이유가 있음 한의사 일 자체가 ㅈㄴ 힘든 (말그대로...
-
옵붕아 자? 28
.
-
D-41ㅇㅈ 4
내일 더 빡시게
-
속상해요... 0
속상하고 분하고 화나요..
-
일단 나부터.
-
요즘엔 오르비가 0
일기장이 되어버림
-
그럼에도 행복하게 살아야지
-
ㅋㅋ
-
최저러 공부법 1
3과목 국영탐(1개) 준비하면 되는데 하루에 한과목씩 돌아가면서 뿌실까요 아니면...
-
더데유데 1
더데유데 어떰?? 3모대비 풀었을 때 너무 실망해가지고;;; 더데유데 좋다는 소리가...
-
벌써몇달짼가~ 1
-
지금 역대급임
-
공부하는 와중에도 무의식적으로 다른 생각함 어젝밤에 본 웹툰 생각이남 집중이 잘...
-
자러갈지도 1
자러갈지도
-
오래된생각이야
-
팀 첫 메이저 대회 우승을 이끌어버리네 ㅋㅋㅋ
-
ㅇㄱㅈㅉㅇㅇ? 8
아이고…..
-
에제 핸더슨 지럈다잉 캬~~이거지
-
교도소였음
-
국정원 심찬우 커리로 쭉타서 5>3후 정도로 오른것 같긴한데 여기서 뭔가 정체되는...
-
난 어제 친구따라 갔다가 너무 싼마이 감성이라 충격받음 이상한 천박한 구호 외치더니...
-
인 연속함수 f(x) 가 존재하는가? 이 함수의 성질은 어떠한가?
-
뭐지
-
인강은 쓸모없다. 13
군대 가기 전 알바도 열심히 하고 주변에 공부 잘하는 친구들 얘기도 들으면서...
-
굳이 독재학원 다닐 필요 잇을가여? 근처 독서실 다닐까 생각중인데
-
잘자 아가들아 6
형 자러 갈게
이런 거 머리아프고 결과값만을 응용하는 게 관심있다면.. 자연대보다는 공대 파일까요?
증명보다는 대수적인 계산을 좋아하는 쪽이요 ㅋㅋ
프로그래밍도 알고리즘을 유도하는 것보다는 뭔가를 뚝딱뚝딱 만드는 게 좋아서리 ㅋㅋ
문과 파이
들켰노!
상경대에 적합한 인재상이 아닐지!
하긴 요즘은 마케팅이든 인사든 금융이든..
경영학과 전반에서 digital transformation 할 게 너무 많아서요 ㅋㅋㅋ