칼럼18) 곡선끼리 접할 때?
게시글 주소: https://orbi.kr/00063305428
오랜만에 오르비에 들어와서 글을 보던 중...

이런 질문 글을 발견했습니다. 그리고 바로 영감이(?) 떠올라서 글을 쓰게 되었습니다.
몇 달 전에 올린 '안 소소한 테크닉' 에서 소개드렸던 내용으로 시작해볼게요. (링크는 첫 댓의 대댓글에!)

이럴 때에는 f(x)는 고정한 뒤에 상수함수 y=m을 움직여가면서 관찰합니다.
이럴 때에는 직선 y=mx에서 기울기를 빙글빙글 돌려가며 관찰해주구요,

이럴 때에는 이차함수를 파닥파닥거리면서 관찰하죠.
때에 따라 상황을 맘대로 바꿔버리기도 합니다.
풀진 않을건데, 아래 문제로 예시를 들어볼게요.

ebs 문제인데요 이 문제가 딱 그러하죠. a를 바꿔줘가면서 확인을 해줘야 하는데, 이걸

이렇게 써서 이차함수 그린 뒤에 삼차함수를 파닥거릴수도 있구요

이렇게 써서 오른쪽 함수 그린 뒤에 y=a를 위아래로 움직여줘도 되겠죠.

이렇게 할 사람이 있나 싶다만 이것도 되긴 되죠 ㅋㅋㅋ
오른쪽 함수 그린 뒤에 a값을 바꿔가며 직선을 빙글빙글 돌려줘도 됩니다.
문제를 풀다보면 이런 관찰을 꽤나 자주 하게 됩니다. 간혹 무조건 (함수)=(상수) 꼴로 바꾸시는 분도 있는데, 개인적으론 비추입니다. 많은 생각을 할 필요 없이 매번 똑같이 푼다는 장점이 있긴 하지만요.
아래 예시를 보실게요.

이걸 계산하는 상황에서 저 왼쪽 놈을 미분하자니... 머리가 아프죠. 이때 이렇게 할 수 있습니다.
와! 계산이 아주 쉬워져요.
그림으로 그려서 상황 관찰하기도 수월합니다. 그림 상황에서 이차함수를 더 낮춰서 딱 접하게 되는 상황이 원하는 상황이네요.
x=b에서 미분계수가 같다는 계산을 해봅시다.
간단히 마무리됩니다.
만약 위 상황에서 이렇게 하지 않고 x를 넘겼다면?

아... 이건 여러모로 더 힘듭니다.
(함수)=(상수) 꼴이 늘 좋은 것은 아니란거죠. 상황에 따라 적절하게 변형해야 합니다.

넵 이런 내용이었습니다. 저는 '=상수' 로 두는 비율이 높지 않은 거 같아요. 개인적으로 곡선과 직선을 다루는게 익숙해서이기도 합니다.
직선은 여러분도 이미 다 아실거라 큰 문제가 없으나, 곡선은 정리해야할 포인트가 있습니다.
특히 곡선과 곡선이 접하는 경우는 많이 다뤄보지 않았기에 어색할 수 있죠.

질문자분의 마지막 말도 그런 맥락에서 나온 말 같네요.
그래서 곡선에 대한 제 지식을 좀 전달해드릴까 합니다. 이게 사설이나 n제 풀 때에는 종종 나오는거라 도움이 될 텐데, 수능과 평가원 시험에 도움 되냐 묻는다면... 대답은 no 입니다. 곡선과 곡선이 접하는 상황을 수능에서 낼 거 같진 않아요.
그럼 왜 소개하는거냐... 다음과 같은 의의가 있어서 입니다.
- 본인이 변형하다가 곡선곡선 접하는 경우를 만들어버렸을 때 해결은 봐야죠
- 도함수를 다루는 감각을 키울 수 있음
- 한 번 쯤 궁금해해봤을 내용임. 지적 호기심 충족,,,재밌을 겁니다
- 사설 풀다 빡칠 때 써먹을 수 있음
아 근데 난 필요 없다 싶으시면 안 보셔도 좋을 거 같아요. (좋아요는 눌러주고 가세요 ㅎㅅㅎ)
곡선과 곡선이 접하는 경우는 크게 두 가지로 나눌 수 있습니다.
1. 위볼과 아볼이 접함

딱 이 그림입니다. 전혀 어색한 게 없죠? 이건 그래도 직관적으로 잘 다가오는 편입니다.
문제는 다음 케이스에요.
2. 위볼과 위볼 / 아볼과 아볼이 접함

질문자 분이 보내신 케이스네요. 이 케이스가 어려운 이유는 접하는 부분 주위에서 일어나는 일들이 결정되지 않기 때문이에요.
위 그림처럼 완전히 '내접' 할 수도 있지만

이거처럼 접하면서 뚫고 지나갈수도 있어요. 와 이건 정말 어색하죠?
삼차함수의 변곡접선처럼 뚫고 지나가는 접선의 "곡선 버전"인 셈이에요.
아래 예시를 보겠습니다. (제가 예전에 질문받은 사설 문제입니다.)

사실 문제가 정확히 기억나진 않는데요 상황을 소개해드리자면


(초록색이 지수함수, 검정색이 이차함수)
이렇게 이차함수 f(x)가 y=e^x 함수를 x=0에서 접하면서 뚫고 지나가야 해요. 이처럼 곡선의 변곡점이 아니더라도 접하면서 뚫고 지나가는 상황이 만들어질 수 있습니다.
이럴 때는 어떻게 접근을 하냐...
도함수를 이용해보면 아주 쉽습니다.
(위 그림을 보면서 글을 따라오실게요)
x=0보다 약간 왼쪽에서는 f(x) 미분계수가 더 작고요(더 완만하게 올라오니까요)
x=0에선 미분계수가 같죠.
x=0보다 약간 오른쪽에서도 f(x)의 미분계수가 더 작아야 해요. (더 완만하게 멀어지네요)
즉 x=0 근방에서 e^x의 미분계수가 계속 더 큰겁니다. x=0일때만 잠깐 같은 것이구요.
이걸 도함수의 얘기로 바꿔볼게요.

(초록색이 지수함수의 도함수, 검정색이 이차함수의 도함수)
이차함수의 도함수가 y=x+1이겠죠. 계속 더 아래에 있으려면 이렇게 되어야 합니다. 도함수끼리 접해버리는거죠.
곡선과 곡선이 접하는 경우는 전부 이와 같은 도함수의 얘기로 환원돼요. 도함수 개념을 잘 떠올리시면서 해결하시면 됩니다.
더 보고 싶은 분들을 위해 재밌는 예시 하나를 보여드리고 마무리하겠습니다.
(예시) 
우리가 흔히 cosx를 옆에 저 이차함수로 '근사'하죠. 대충 그려봐도 x=0 근처에서 굉장히 비슷하게 생겼습니다. 근데 뭐가 좀 더 위에 있는지 궁금하지 않나요?!
실제로 논술에 종종 나오는 문제인데, 앞서 소개드린 도함수 접근으로 해결가능합니다.


해석을 해볼게요.
x=0+ 에선 이차함수가 더 미계가 작고
x=0- 에선 이차함수가 더 미계가 크네요.
극단적으로 그려보자면 이렇게 되는겁니다. 내접하는 경우네요. cosx가 더 위에 있습니다.
사실 h(x)= cosx-x제곱 함수를 만들어서 h(x)의 도함수를 관찰해도 되는데요, 도함수 감각 잘 살려보기 위해 소개드려봤습니다.
더 관심있으신 분들은 아래 예시도 직접 해보셔요!

전 예전에 1/x와 lnx 중 뭐가 더 가파르게 떨어질까가 궁금했었는데 이게 딱 그 내용을 담고 있습니다.
준비한 내용은 여기까지입니다. 다음에 더 유용한 수학 칼럼으로 찾아뵙겠습니다 :)
좋아요와 팔로우 부탁드려요!
#무민
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
유급하기로 했습니다.. 1 0
통합수능 준비하러 갑니다.
-
이번에 수시 이월 농어촌 1 0
적을 것 같나요? 그럼 빨리 죽으려구요
-
지거국 어디까지 가능할까요 0 0
가군 나군 충북, 전북 끝자락이라도ㅠ 다군은 홍대 세종 쓰려구요
-
시대 재종 0 0
시대 대치 수능성적선발이랑 평가원성적선발 둘다 넣었는데 이렇게 뜨면 둘다 떨어진...
-
시대인재 라이브시간 0 0
다시보기 녹화vod 이거 2배속되죠? 그리고 2배속하면 300분이니까 150분짜리...
-
이분들이 얼마나 고트들이엇는지 실감나긴하네 그시절은 수험생도 개많앗는데
-
몸살인거같아 0 0
오들오들 개춥네.. 날씨가 추워서그런가
-
고대식 652 0 0
.
-
시대 리트 아 뭐야 1 1
아 21등은 아니지 내 10만원
-
낙지 오늘 업뎃 2 0
아직 안된 거 맞죠?
-
교우 칸수 버그인가요 0 0
스나이퍼 할 애들 찾는도중에 서성한중경보다 고대가 오히려 칸수가잘나오는데 소수과라서...
-
오 병호햄 프메나왔다 2 0
-
시대리트 결과 0 0
추논 이거 대체 뭔가요 뭔 시험을 두시간 넘게 봄
-
입학처가 거기서 만족을 못하는건지 좀신기하네
-
만약 둘 다 붙는다면 어떤 선택이 더 나을까요... 성대로 가면 수원으로 유배 가고...
-
되는 의대가 나군밖에 없어서 1 0
이 아까운 안정 카드를 쓸 수가 없구나.. 까딱 잘못하면 이 점수 들고 전북치가게 생겼네
-
공부가 3 1
게임보다 더 재밌어짐
-
2026년은 열심히 산다 1 0
진짜
-
이월된거 1 0
진학사에 언제쯤 반영될까요?
-
최저 과탐으로 맞춰도 되나요? 3 0
사탐 너무 하기 싫어요. 그냥 고문이에요. 통합사회 할 때도 너무 싫어서 그냥...
-
근데 하나 확실한건 학교가 적극적으로 훌리짓을 하니까 0 1
진짜 인식이 좀 바뀌긴 하는 것 같음 24학년도때만 해도 영어 1=2 해줬을때 뭐야...
-
박승동채널에 기하 28 29 30 해설 올라왔는데 2 0
첫 멘트가 ‘흔하지 않은 기하 해설강의입니다‘ ㅠㅠ
-
연고라인 대깨설 표본분석하는법 2 1
서울대 지원=대깨설 서울대 미지원= 소수과 표본을 숨긴 대깨설 Q.E.D.
-
아 텔그 써야하나 0 1
낙지 + 고속 + 스나 + 메가 지금 이거 4개 계속 돌리고 있는데 여기 텔그까지...
-
아오 성적표 4 0
모고 성적표 잃어버리면 다시 못 받죠? 하
-
영어 ㅠㅠㅠㅠ 0 0
영어 4라서 아주대식 3등급보다 18점 감점이라 지반공 될거를 자전이 애매함...
-
독재망하는이유 7 0
독재망하는이유 알려주실 수 있으실가요? 독재하려는데 망하는 이유 참고해서 최대한 피할려구요
-
표본분석 해보니까 ㄹㅇ신기하네 3 0
성대에선 나보다 위인 사람이 고대에선 나보다 아래ㄷㄷ 반영비땜에그렇겟지
-
인생 첫리트 ㅁㅌㅊ..?? 7 0
시대리트 신청해서 쌩 초시로 보고왔는데 이 정도면 진입해도 될까요?
-
이투스 돈 진짜주나 2 0
벌써 3만원넘게 벌음
-
울의 본2때도 울산인가보네 0 0
흠
-
2안정으로 간다 0 0
한철학 중정외 서강자전 이대로가자 772
-
공대 취업은 서울 벗어나는 게 5 0
좀 힘든 듯
-
그래서니들이뭘할수있지 2 4
성대입학처가전화질로장난을치든반영비로메이플을하던버튜버를만들어뒤에빨간약배리나를숨겨놓든윤석...
-
그러지 않고서야 다른 대학 입학처 5개쯤 합친 정도의 일을 하는 게 설명이 안됨
-
추워서 몸이 힘든듯 5 0
걍진짜 개춥고 개피곤함
-
문학 강사 추천 1 0
문학 강사 추천해주세요! 대성 메가 다 있어요
-
센츄 신청 어케 함 9 1
ㅈㄱㄴ 국어 수학만 따지는 거임? 고2임
-
진학사 결제 할까요 말까요 0 0
농어촌 가능이라 일단 김영일 결제하고 보고있는데 아무래도 진학사가 표본이 더 많다보니까.....
-
뉴런 진도표 5 0
뉴런 이번에 진도표 올라왔던데 저 진도대로 따라가면 되는거임? 아니면 더 타이트하게...
-
지금 낙지만 보고잇는데
-
이건 사문현상임 자연현상임? 16 0
사람이 똥을 싼다 이건 인간의의지로 화장실에가서 싸는거니 사문현상인가 자연현상인거 같기도하고..
-
강x이벤트 당첨됐네 2 0
뿌링클말고 에어팟 주라고 ㅠㅠㅠ
-
강기원 현강 0 0
강기원 미적 정규반인데 스1에서는 수2랑 미적만하고 수1을 안한다고 하더라구요..?...
-
연말 바쁘다 3 0
이거저거 일이 많네 영어공부도 해야되고
-
한의사 폐지하고 의사로 통합해요!
-
반영비 가지고 장난치는 학교는 절대 용서 못함
-
뭐든 해야하는데 3 1
지금 몸이 안좋으니 짜증만 늘고 그냥 당도 100% 펄 가득 추가한 공차 L사이즈로...
-
그 일이 괴상하긴 하다만
-
독재에서 13 0
타이머를 소리키고 쓰는 애가 있네 집에서 그렇게 알려준건가

좋은 칼럼 감사합니다 !!본문 언급 칼럼입니다
https://orbi.kr/00062385201

ㄷ ㄷ확통이라 몬말인지 모르겠네용.. ㅠㅡㅠ

앗... 다음 칼럼 수2로 가볼게요
감사합니당 수2 범위에서 관련 내용으로 지금 딱 떠오르는 건 항등식이라도 차함수로 좌변에 몰아넣고 인수분해해서 ”x=a,b,…이면 항상 만족“을 따로 체크한 후 나머지 다항식은 차수를 줄어서 최대한 쉬운 함수를 관찰한다? 정도가 있는 것 같아요이차함수를 파닥파닥ㅋㅋㅋㅋㅋ
잘 보고 갑니다

감사해요!파닥파닥 빙글빙글 ㅈㄴ웃기네ㅋㅋㅋㅋㅋ
오 엄청 유익한 글인 것 같아요...