-
아직까지 소위 명문대라 불리는 라인은 학벌이 유의미하게 작용한다 생각하나...
-
1시간도 안되는듯..
-
어제 어버이날인데 뭐 감사 인사나 선물 이런 거 아무것도 없었다고 엄청 혼이 났는데...
-
이해가안되네
-
수능이면 낮3쯤 되나요 아니라면 몇등급쯤 되나요 확통 2틀 공통 4틀이에요
-
공부하자
-
수험생 느그들이 학벌과 수험판에서 몸비틀며 뭔짓을 해봐야 586 아파트 기보유자의...
-
https://www.donga.com/news/Society/article/all/...
-
뭐 시켜먹지 14
제육도 먹고싶고 돈가스도먹고싶고 뜨끈한 국물도 댕겨
-
5모보고 나니 느낀건데 14 15 21정도의 문제를 풀 순 있는데 한눈에 안들어와서...
-
잘래 3
-
https://www.kci.go.kr/kciportal/ci/sereArticleS...
-
이 레어 너무 싫어요
-
이과는 취업이라도 잘하잖아
-
요근래 학생들 중간고사가 끝나 과외를 많이 알아봅니다!! 과외알바를 생각하시는...
-
221122 9
수학 교육청 2등급인데 이거 맞춤 칭찬해주세요
-
사설 컨텐츠(이감)vs교육청 국어 기출 하면 걍 이감하다가 자료 부족할 때나 교육청...
-
6번 - 각도 범위 안봄 레전드 능지이슈 30번 - 6 aa bb 나열을 잘못계산함...
-
과제밀려서 분량조절 실패 단과 있어서 오늘은 여기까지
-
지금 시작한거 자이 중등 독해력 기르기 문학,독서(배송중) 수특 문학,독서 읽고...
-
노력마저 재능이고 노력해서 얻은 학벌은 무쓸모에 존잘존예 금수저로 태어나야 인생 쉬워지는게 맞으면 10
아무것도 안하고 무기력하게 살거임? 전부터 느끼는건데 자신의 의지력과 용기가 부족한...
-
그래프를 그릴 땐 무지성으로 찍찍 긋는게 아니라 기준점과 무조건 지나야 하는 지점을...
-
10년전 페이커 뜨던 시절엔 의미가 있었음 그땐 그 시장 성장기고 성숙한 시장이...
-
3학년인데 아직도 대학은 술먹으러감
-
초코릿의 정체는 3
4시에 당 떨어지는 건 과학인가 이제 초콜릿을 까보겠오 쓱싹- ㄷㄱㄷㄱ 정답은 랏코...
-
좋은 대학 나와봤자 쓸모 없다-> 대학이 좋아도 내가 능력있어야한다 (O) ->...
-
책사러왔는데 둘다있어서 노베 먼저살까 고민중이긴해요 참고로 국어 5등급입니다.
-
10분인가 남아서 34번 이상하게 생각하다가 4번한거 3번으로 바꿔서 틀리고 4번은 의문사했네 하
-
나도 모르는 상처가 ㅈㄴ 많지?
-
멀쩡히 대학 다니는사람이 있는데 한의대노답 학벌노답 이러면 당연히 화나지
-
학벌 필요한 이유 14
거울을 보자 앞에 보이는 생명체의 얼굴로 돈을 벌 수 있을 거 같으면 공부 안 해도 됨
-
롤 티어는 좀 긁히네 ㅅㅂ 난 무얼 위해 롤을 했단말이냐
-
올해 3모 22번 미불+미불인 함수 미출제요소 맞음? 미적분에 절댓값함수에서...
-
학벌 안좋은거보단 좋은게 낫지
-
영어 빈순삽 0
만 모아져 있는 문제집 있나용 높2에서 1로 넘어가고 싶은데 ..
-
건장한 여고생장임 잘먹는편 고기제외
-
에휴 내인생아 3
-
남의 노력을 폄하하먼서 현실적인 조언을 한다고 뿌듯해하는 인간들이 많음
-
살기는 편하지만 편한만큼 추해지는 마인드
-
내 자신이 1
항상 실망스럽다
-
뭘해도 재미가 없어
-
공통 11-14 4
얘네 연습하려면 뭐풀어야하나요? 고 2 때는 킬러빼고 다맞췄는데 고3 들어와서...
-
오르비 복귀 8
반갑읍니다
-
첫째로 와꾸 >> 학벌인걸 결혼적령기 놈년들한테 다 퍼져버렸고 둘째로 저출산때문에...
-
강의 존나게 안 올려서 공부 안하는 나같은 사람들이 자기위로하기 좋음 저 대단한...
-
홍준표 "김문수 캠프 상임선대위원장 안한다…내일 미국 출국" 3
[서울=뉴시스] 정윤아 기자 = 홍준표 전 대구시장은 9일 자신이 김문수 국민의힘...
-
대학가서 아싸는 아닌거같음 반대도 마찬가지고
-
카이스아나토미 9
뭔대 강의가 3개밖에없음? 이제 막 개강한거임??
-
지불 금액의 수 일반화 해봤는 데 도움이 되시길 바라요
-
현실: 1학년은 기본기 점검 및 고학점 폭격, 2학년부터 이론 전공 공부 주구장창,...
좌변이 f(x) = -1일 때 최소, 우변이 x=1일때 최소
-> f(1)=-1
이건 비약 아닌가요
논리적인 비약 없도록 왜 그렇게 되는 것인지는 첨부파일에 사잇값 정리를 통한 설명이 함께 들어가 있습니다. :)
대칭성을 이용했다고 모두 비약인 풀이는 아닙니다.
그.. 첨부파일 정도면 애매하지만 적당하다고 생각해서 넘어가고, 굳이 추가 언급을 안하려고 했는데.. 님처럼 오해하시는 분들이 더 생길 것 같아 제 생각을 정확히 적으려고 합니다.
1) 김지석강사님 풀이는 애초에 대칭성을 쓴 풀이가 아닙니다. 좌우변의 최소를 엮는 풀이입니다. 제가 대칭성 보자마자 발작하고 그런게 아니라요.. 좌우변 최소를 함부로 엮을수 있냐고 물어본겁니다. 첨부파일 확인을 정확히 안 한건 제 실수입니다. 다만 논란이 있는 문제니(제 실수 별개로! 저같은 실수를 하는 사람이 한둘이 아닐테니) 사잇값 정리 내용도 본문에 있는게 더 좋다고 생각은 해요
아무튼 첨부파일 확인하니 사잇값을 쓰긴 했는데...
2) 저렇게 최소를 엮어서 등식을 뽑으려면 자잘하게 증명해야하는게 많습니다. 우변의 최소값 존재성(이건 사잇값정리)과 좌변의 최솟값이 나오는 f(x)의 값의 유일성까지 따로 뽑아내줘야 두 최소를 엮을 수 있어요. 이거까지 파일에 정확히는 언급 안되어있고요. (즉 f(x)=-1때만 최소이므로 유일하게 정해진다 등의 언급이 없다) 하지만 이렇게까지 깊게 생각하는 학생이 만약 있다면, 첨부파일의 x^2+2x 그래프를 유심히 확인할거라고 생각했고, 이런거까지 따지고 싶지 않았고, 아마 강사님도 알지만 너무 길어지니 생략했겠거니 해서 그냥 넘어갔습니다.
2-1) 이 문제는 본질적으로 꽤 어렵다보니 이쁜 풀이를 위해서는 완벽한 논거생략을 할 수 밖에 없다 생각해서 이해는 갑니다.
3) 좌변의 유일성은 뭔소리냐면.. 간단하게 말해서 만약 4차함수 상황이라서 f(x)=-3일때도 최소라면 f(1) = -1 or -3입니다. 문제 상황은 이차함수라서 최소가 되는 f(x)의 값이 하나라서 상관없습니다.
내용 자체는 함수의 대입과 명제에 관련된 자명한 내용이지만
수능에선 일종의 스킬이라고 부를만한? 이쁘지만 조심해야하는 풀이라 생각해서 댓글을 달았습니다.
역시 수학은 시끌시끌해야 수학이죠! ㅎㅎ 수학할 맛 납니다!
우변에서 구간 [0,2]에서 최소가 x=1일 때로 유일하다는 건 적었습니다만
*좌변에서-2<X<0에서 이차함수의 최소가 꼭짓점 하나라는 건 너무 명백하여
사족이 되는 것 같아 적지 않았습니다.
(정의역 값, 치역 값 하나씩이니 유일함!)
요즘 킬러문제는 풀이가 어려워야 킬러문제가 아니라,
생각의 사고를 깊게 할 수 있는 지가 킬러문제인 듯 합니다.
이 풀이의 바탕은 스킬(?)이 아니라
기본 그래프 개형을 잘 활용 하자! 라는 풀이입니다.
사실 스킬이랄 게 뭐가 있나 싶습니다....ㅎㅎ
맞아요 그렇게 생각한것 같아 보이는 자료라, 끄덕끄덕하면서 잘 읽힌것 같습니다. 그 정도 사족은 그래프 개형으로 그려주면 충분하니..
스?킬이라고 말한건 좀 간거같고, 살짝 조심해야한다 이정도로 생각해요
워낙 명료하기 때문에 조심해야 할 부분이 없는 듯 해요.
알고 있는 기본 그래프 개형으로 모르는 그래프를 추론하는 태도는 시험장에서 쓰기도 좋고 : )
여하튼 오랜만에 심도 깊은 수학적인 부분을 다루는 댓글을 보고 기분이 매우 좋았고
논리화학님의 높은 수학적 성취를 엿볼 수 있었습니다. : )
p.s.
역시 칼럼을 많이 작성하시는 분이군요!
논리화학님 칼럼도 올리실 때마다 잘 보겠습니다!
맞아요, 아무튼 좋은 풀이라고 생각해요. 새로운 관점 잘 봤습니다. 감사합니다 ㅎㅎ
최솟값 존재성 증명 안 하셔서 뭐라 하려 했는데 댓 보고 얌전히 돌아갑니다
f(x)=-1을 만족하는 x값이 존재하지 않을 수도 있었음을 말씀하시고자 한 건가요?
네. 맞아요.
첨부파일에 있는 내용은
만약 문제에서 f(x)가 연속이라는 조건이 없었다면, 존재하지 않을 수 있습니다만
연속이기 때문에 사잇값의 정리에 의하여 존재하게 되는 이유를 정리해 놨습니다. : )
네
저도 이거 보고 댓글 왔는데 첨부 파일에 있나 보네요
음… 28번문제 현장에서 시간 오래 할애했던 애송이 현역의 시각에서는 뭐가 쟁점인지는 모르겠고 마냥 놀라우면서도 수험장에서 킬러문제를 저런 시각으로 바라볼 수 있으려면 얼마나 짬밥을 먹어야하나 싶을 따름이네요…ㅋㅋ 좋은 풀이 배워갑니다!!
우변이 x=1에서 최소가 된다는 것에 비약이 심합니다.. 우변은 미분을 통해 최소가 되는 지점을 찾아야해요. cos(pix)가 가질 수 있는 범위가 -1~+1
이니까 cos(pix)=-1일 때 최소인 겁니다. x=1에 대칭이라고 해서 우변이 x=1일 때 최소가 되는 것이 아니구요..
좋은 지적 감사합니다.
그 부분에 대해서 20231220 I dance님이 지적하신 내용이 맞습니다.
해당 글은 삭제하고 수정된 내용으로 곧 다시 올리겠습니다.