[미적 자작 문항] 등위선 (level curve), 음함수 미분법
게시글 주소: https://orbi.kr/00062614805
함수 위를 움직이는 점
과 함수
위를 움직이는 점
사이의 거리를
라 하자.
이때 함수 의 최솟값과 그때의 t, u값을 구하고 이를 논리적으로 설명하시오.
조금 더 깔끔한 표현을 아래 남깁니다. 해설은 변동 없습니다.
<해설>
우선 직관적으로 찍어보기 위해 그래프를 확인해보자.
대충 왠지 (0, 1)과 (1, 0)에 위치해 답이 sqrt2가 될 것 같긴 하다.
자 이제 논리적으로 생각해보자.
이렇게 생각할 수 있고 sqrt(x)는 증가함수이니 L(t,u)는 저 [ ]에 있는 식의 값이 최대일 때 최대일 것이다.
라 하자. 이때 점 (t, e^t)를 어디 하나 잡으면 이 점은 함수 y=ln(x) 위의 점 (u, ln(u))에서의 법선의 방정식을 지날 것임을 알 수 있다.
(이는 등위선과 관련된 내용인데... 아래를 참고하자)
등위선(Level curve) 이용하여 최대/최소 문제 쉽게(?) 풀기
법선의 방정식은 다음과 같을 것이고
그럼 u와 t 사이의 관계식을 얻을 수 있다.
편하게 정리하면 이러하다.
이제 그럼 음함수 미분법을 통해 다음을 구해보면
이때 위에서 얻은 관계식에 의해 다음을 알 수 있으므로
식을 정리해보면 다음과 같다.
자 그럼 대충 t=u or t=ln(1/u)일 때 z(t, u)가 극값을 지닐테니 이때를 조사해보자.
엄밀하게 생각하면 이러한 상황이니 극값이 존재한다면 그것은 극소일 것임을 알 수 있다. (사실 이것도 직관적인 것 같긴 한데 더 이상 엄밀하게는 지금으로서 못 보이겠음)
먼저 t=u일 때는 관계식이 다음과 같이 모순이므로 (만족하는 t가 존재하지 않음)
(참고로 저 E 뒤집고 / 그은 것은 'not exists'라는 뜻이고 s.t.는 such that의 약어로 '다음을 만족하는' 정도의 의미입니다.)
t=ln(1/u)일 것이다. 다시 말해 u=e^(-t)일 것이다. 이를 활용해 관계식을 정리해주면 아래와 같다.
그럼 이를 만족하는 t를 찾아보면
t=0이다. 좌변의 함수의 도함수를 생각해보면
부호만 고려할 때 e^t에 관한 이차방정식이니 근의 공식을 생각해보면
를 만족하는 t에 대해... 대충 아무튼 그래프 그려보면 t=0이 유일합니다.
자 그럼 우리는 t=0이고 u=1일 때,
다시 말해 t=ln(1/u)이어서 z(t, u)의 t에 대한 도함수의 함숫값이 0일 때
함수 z(t, u)가 최솟값을 지님에 따라
함수 L(t, u)도 최솟값을 지닐 것임을 알 수 있습니다.
이는 점 (0, 1)과 (1, 0) 사이의 거리이므로 답은 처음에 직관적으로 예상했듯 sqrt2가 됩니다.
뭐 t로 시작하든 u로 시작하든 상관없으니 함수 L(t, u)를 u로 미분하는 쪽으로도 풀어보셔요 ㅎㅎ
이 문항은 2021학년도 9월 가형 30번에서 제작 아이디어를 얻어
2014학년도 6월 B형 30번에서 풀이의 해결책을 떠올렸습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지하철 놓칠 뻔 1
휴
-
의대열풍으로 같이 휩쓸려서 입결이 올랐다고봄 아니면 진짜 수의사가 저만큼 메리트가있어서라고봄
-
원합니다. 2
내가살기위해서
-
새르비 맞팔구 3
극도록 퇴화한 레버기는 얼버기와 구분할 수 없다
-
내 눈 ㅠㅡㅠ
-
3모 13315 5모 14311 탐구 공부가 어느정도 끝나서 수학을 하고있는데...
-
수능 다시 준비하면서 독학으로 하다보니 뭔가 스트레스 받고 집중 안되고 머리...
-
우선 등급은 작수기준 국어(화작) 4 수학(미적) 3(공통2틀,미적4틀) 영어...
-
딱히 자취한다는 생각이 안듦... 그냥 기숙사 사는거같음
-
정시인데 등급어그로꾼 댓글에 요즘 입시 모르는 나형충 등장 물론 작년 설경제는 빵이긴 했음
-
초딩 6년전체 따 당하고 나서 악몽도 자주꾸고 늘 불안해하고 친구 0명 자주울고...
-
오르비 안녕히주무세요 12
-
이래도 되는걸까.. 내 모든 걸 알고있음
-
새벽 드라이브 겸 스윽 가볼까
-
극단적인 곳은 성비 9:1인 이유가 있음 한의사 일 자체가 ㅈㄴ 힘든 (말그대로...
-
옵붕아 자? 27
.
-
D-41ㅇㅈ 4
내일 더 빡시게
-
속상해요... 0
속상하고 분하고 화나요..
-
일단 나부터.
-
요즘엔 오르비가 0
일기장이 되어버림
-
그럼에도 행복하게 살아야지
-
ㅋㅋ
-
최저러 공부법 1
3과목 국영탐(1개) 준비하면 되는데 하루에 한과목씩 돌아가면서 뿌실까요 아니면...
-
더데유데 1
더데유데 어떰?? 3모대비 풀었을 때 너무 실망해가지고;;; 더데유데 좋다는 소리가...
-
벌써몇달짼가~ 1
-
지금 역대급임
-
공부하는 와중에도 무의식적으로 다른 생각함 어젝밤에 본 웹툰 생각이남 집중이 잘...
-
자러갈지도 1
자러갈지도
-
오래된생각이야
-
팀 첫 메이저 대회 우승을 이끌어버리네 ㅋㅋㅋ
-
ㅇㄱㅈㅉㅇㅇ? 8
아이고…..
-
에제 핸더슨 지럈다잉 캬~~이거지
-
교도소였음
-
국정원 심찬우 커리로 쭉타서 5>3후 정도로 오른것 같긴한데 여기서 뭔가 정체되는...
-
난 어제 친구따라 갔다가 너무 싼마이 감성이라 충격받음 이상한 천박한 구호 외치더니...
-
인 연속함수 f(x) 가 존재하는가? 이 함수의 성질은 어떠한가?
-
뭐지
-
인강은 쓸모없다. 13
군대 가기 전 알바도 열심히 하고 주변에 공부 잘하는 친구들 얘기도 들으면서...
-
굳이 독재학원 다닐 필요 잇을가여? 근처 독서실 다닐까 생각중인데
-
잘자 아가들아 6
형 자러 갈게
-
답 470
-
ㅇㅋ ㅇㅋ, 그럼 오르비식으로 가볼게. 아 진짜 이거 말하면 좀 그렇긴 한데,...
-
저 조금 궁금해짐 오르비에 쓴 글들 gpt에 한번 돌려보면 뭐가 나올지도
-
자연수 하나를 저장하고 있는 기계가 있다고 하자. 이 기계에 저장되어 있는 숫자가...
-
이제 진짜 잔다 6
8시에 강기원 자받튀하러 가야됨
-
애니메이션 뭐에요..? ㄹㅈㄷ네
-
국수영 원점수 기준 전교 3등 국수영탐 원점수 기준 전교 2등 (추측)...
작년 수능완성 실모 미적 30에 있던 주제네요
오 그랬군요.. 며칠 더 고민해보고 모르겠으면 찾아봐야겠어요! 감사합니다
그 기출 문항 중에 s, t 갖고 뭐 했던 거 생각해서 '법선을 지난다'까진 떠올려봤네요
원 그리면 두ㅣ진다
그 문제요?
네네 ㅋㅋㅋㅋㅋ 찾아보니 1406B30이었네요
일단 t=0일때 방정식 만족하는거 같고
맨 밑에 식의 좌변을 미분해서 t에대한 증감을 파악해봐서 t=0이 유일한근임을 밝히면 될 듯
식의 좌변을 e^t에 관한 이차방정식으로 생각해봤는데 계수에도 t가 들어가 헷갈려서.. 일단 지오지브라의 힘을 빌렸네요
둘이 y=x 대칭이니까 e^x랑 x사이에 최소거리 구하면 되는거 아닌가요 둘 사이 최소거리는 e^x의 접선중 기울기가 1인 직선과 y=x사이의 거리니까 루트2가 되겠네요
법선을 이용한 증명을 하고 싶으셨던것같네요ㅋㅋ
본문제대로 안 읽고 댓 달아버린...
맞습니다 ㅋㅋㅋ 저도 처음에 그렇게 답 냈는데 '두 함수 위를 각각 움직이는 두 점 사이의 거리'를 하나의 함수로 직접 작성해보고 싶어서 저렇게 해봤어요. (완전하게 엄밀하진 않더라도 일단) 풀이 완성한 듯합니다!