자연 상수 e의 정의 (ft. 3점짜리 자작 문항)
게시글 주소: https://orbi.kr/00062603106
고등학교 경제수학을 공부하거나 경제를 공부하거나 미적분을 공부하다 보면 'e'라는 수에 대해 공부하게 됩니다.
이는 원주율과 함께 우리가 고등학교에서 마주할 수 있는 대표적인 무리수 중 하나입니다.
참고로 원주율은 3.14159265358979323846264338327950288419716939937510582097494450230781640628620899862803482534211706798214808651328230664709...의 값을 지닙니다. 뇌 훈련 목적으로 심심할 때 쭉 외워보시면 좋겠습니다. (지금 적은 수까지는 제가 외운 것입니다 ㅎㅎ)
우선 모르는 지식을 접할 때는 네이버나 구글, chatGPT 등을 통해 읽어보면 좋습니다. 얘네는 '이걸 처음 보는 사람의 입장'에서 설명해준다는 느낌을 받았기 때문입니다. 아래 '자연 상수 e' 클릭하시면 네이버 검색결과로 이동합니다.
자 그럼 대충 요약해보면 e는 다음과 같이 정의한다고 합니다.
우리가 알 수 있는 것은 e는 어떤 식의 극한으로 정의하는데 그 극한은 밑이 1로 가고 지수가 무한대로 발산하는 극한이라는 것입니다. 다시 말해 이런 느낌이라는 거죠!
그렇다면 아래 극한처럼 밑이 1로 가고 지수가 무한대로 발산하는 극한을 보면 우리는 'e와 관련이 있나?'라는 생각을 해볼 수 있습니다. 참고로 아래는 미적분에서 e의 정의를 처음 공부하면 쉽게 확인할 수 있는 문항 중 하나입니다.
그럼 이것을 e의 정의를 활용해 해결해봅시다.
참고로 함수의 극한의 성질 중 아래는 우리가 수학2나 미적분에서 배우진 않지만, 대충 '각각이 연속이면 이렇게 할 수 있다'라고 이해하시면 됩니다.
다시 말해 함수 f(x)가 x=g(a)에서 연속이고 g(x)가 x=a에서 극한이 존재하면 성립한다는 뜻입니다. 증명은 아래로 하면 되겠죠!
이러한 상황일 때
이런 느낌이니
이것과 같아 성립한다.. 뭐 대충 이렇게요
자 그럼 이제 제 자작 문항입니다. (옛날에 만들었던 것인데 처음 오르비에 공유했던 글은 아래를 참고하시면 좋겠습니다.)
대신 풀 거면 글 들어가지 말고 직접 먼저 풀어보시기!
[미적 자작 문제] 무리수 e의 정의
풀이 과정은 따로 남겨두지 않겠습니다. 푸신 후에는 위에 글 '무리수 e의 정의' 들어가셔서 답 확인해보시면 좋겠습니다!
아 참고로 저 sinh(x)는 'hyperbolic sine function' 정도로 읽으며 쌍곡선 함수의 한 종류입니다. 아래와 같습니다.
말 나온 김에 쌍곡선 함수와 관련한 것들을 남겨두겠습니다. 지수함수 적절히 조작한 느낌인데 sin이 나와서 '삼각함수?' 하신 분들이 계실 거예요. 이는 실제로 삼각함수에서 논할 수 있는 것들 (삼각함수 간의 관계, 삼각함수의 덧셈정리 등) 과 쌍곡선함수의 형태가 연관이 있기 때문에 저렇게 명명했다고 알고 있습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
눈팅만 하다 글써봅니다 잘부탁드려요!
-
뭐지 수1은 이해원 시즌2로..? 샤인미 풀고 풀려 했는데
-
쌍사 0
쌍사 작년 기준으로 3등급이면 탐구 그냥 다른 거로 옮길까요..?ㅠㅠ
-
컨셉질 끝 4
좋은 밤 보내세용
-
김승리 커리탔는데 문학은 ㅈㄴ좋은데 비문학은 현장에서 못써먹겠음 메가대성 둘다있는데 ㅊㅊ좀
-
방송 보고싶다 1
돌아와 푸바오
-
11모 성적유출 사태 이후로 아예 5월에 내나 보네 한번만 그럴줄 알았는디
-
나는 사람들 못속이겠네..
-
휴릅 쉽지 않다 9
사는데 재미를 느낄만한게 너무 없다 요즘은
-
흠...
-
작수 39고 사문은 작수 때 지나치게 꿀이어서 낌새 이상해서 배제할 거임
-
깝치지마 12
자러갈거니까
-
확 풀어버릴라니깐
-
학교 1년 다니다가 군대다녀오고하면 5수쯤 나이쯤 됨
-
제 전닉 아시는 분 14
전생닉이라도
-
흠
-
담임이 공동체를 위해 노력해라~ 이렇게 은연중에 세특에 꼽써놨던데 이거 영향...
-
다른 커피와 마찬가지로 이뇨 작용이 활발해짐...
-
없겠지??으흐흐
-
잘 만들긴했는데 예상한거랑 좀 많이 다르네 그래도 기억에 잘 남기는할듯
-
현역 수학.. 0
개념에센스 수1 수2 1회독 끝났는데 복습 제대로 안해서 3모 3입니다 이제...
-
하투하 이안이랑 동갑
-
언미사2해서 연치가려면 내신성적 안좋으면 많이 불안할까요? 거의 만점권 받으면...
-
기숙학원 어디있나요?? 잘 못찾겠어요ㅠㅠㅠㅠ
-
왕잘하는아사람 10
이 되고 싶다
-
이기상 이만복 0
필수임?? 수강생 분들 후기좀여
-
올비에 08누구있음? 26
내가 직접 스팸메일이 되야겠어
-
21세기에 태어났으면 다 귀여울수 있다고 생각해요
-
으악
-
하.. 1문단만 조금 겹치고 나머지는 딴판인 지문이 ebs연계 대표문항임
-
저 그때랑 커뮤를 대하는 태도가 많이 다른데
-
최근 증원이니 필수의료패키지니 뭐니 의대생들이 동맹휴학(본인들은 자발적인 것이라고...
-
귀여움 메타임? 10
이 사람이 제일 귀엽다
-
06 최하위 0
-
심심하네 x지좀 13
쪽지좀
-
두둥둥장 14
두둥퇴장 저요즘오르비잘 안들어오는데...
-
6모배틀뜰사람 15
이제 공부좀 열심히 해야할거같아서 사람마다 밸런스조정 들어가겠습니다
-
자러감 인사해줘 12
-
귀엽지가 않아서 3
대화에 못끼겠네요 그냥 멀리서 어버버
-
춥네 6
으스스
-
[3차]6월 학평 대결에 참여할 08년생 분들을 구합니다 7
안녕하세요, 중의적 표현입니다. 지난 3월 학력평가에서 강해린08님과의 대결이...
-
닉네임이 많아요 2
유동닉이에요
-
동접하면 안되는 줄 모르고 오늘 처음 동접했는데 이거 걸리나요? 책 배송지는 같은...
-
솔직히 힘든데
-
수능 국어, 수능 수학, 입시 등 밤 12시까지 질문받습니다
-
안녕하세요 지금 이시기에 많이 늦었지만 정시를 할지 수시를 할지 아직도 모르겠어서...
-
내 프사가 젤 귀여운데 10
-
나 귀엽지 않음? 12
ㅇㅅㅇ

오전공수업에 나오는거다
일단 추천꾹
e 말씀하시는 건가요? 아님 쌍곡선 함수? ㅋㅋㅋ
e요! 지금 경제수학 배우는중이라서 ㅋㅋㅋㅋ
오 경제학과시구나 ㅋㅋㅋㅋ 반갑습니다! 가까운 지인 가족 분들 중 한 분도 외대 경제학과 나오신 것으로 알고 있어 더 반갑네요

맥클로린 급수를...저런 문제 옛 기출인지 오르비인지에서 본 것 같아요!
미적 개념 처음 배울 때 재밌어했던 식 정리 중 하나네요
삼각함수 극한 처리할 때처럼 얘도 급수 다 박아버리면 lim 분배하기 쉽긴 하겠네요 ㅋㅋㅋㅋ 옛 기출에도 있었다면 완전 재밌겠네요!! 개인적으로 수능이나 적어도 평가원 모의고사 25번 쯤에 한 번 나와도 재밌을 것 같다는 생각을 항상 해요

최근에 오르비에 어떤 분이 올리신 건 본 것 같은데 요즘 극한 계산만으로 25~26 정도 난이도는 안 내는 추세더라고요혹시나 제가 교사나 교수 되어 수능 출제하러 들어가면 제가 출제해야겠네요 ㅎㅎ