칼럼10) 소소한 테크닉
게시글 주소: https://orbi.kr/00062374843
나름 알려진 편이고, 은근히 유용하며 개념적으로도 의미가 있는 '소소한' 테크닉 하나를 소개해드릴까 합니다.
이미 알고계신 것도 있을 거고, 아마 처음보는 것도 있을거에요!
이는 e^x의 재밌는 특징에서 시작됩니다.
y=e^x는 도함수가 e^x이죠. 원함수와 도함수가 식이 같다는 겁니다. 즉, 원함수의 함숫값이 그 점에서의 미분계수인 셈이죠. x=a에서 함숫값은 e^a, 미분계수도 e^a일겁니다.
기울기가 e^a라는 것은, x축으로 1 이동할 때 y축으로 e^a만큼 이동한다는 뜻이죠. 그런데 마침 이 지수함수 위의 점(a,e^a)는 함숫값이 e^a네요.
여기서 다음 사실을 알아낼 수 있습니다.
e^x 위에 점 (a, e^a)에서의 접선은 x절편이 a-1이겠네요!
이걸 뒤집어서 말하면, (b,0)에서 y=e^x로 접선을 그으면 접점은 x좌표가 b+1인 곳에서 생긴다는 겁니다. 기울기는 e^(b+1)이 되는 것이구요.
y=e^x 뿐만 아니라 얘가 평행이동되었을 때도 마찬가지입니다. 그 함수의 점근선 위의 점에서 접선을 날렸을 때 접점은 x좌표가 1 큰 곳에서 생깁니다.
아래 문제에 적용해보겠습니다.
기출 문항입니다. 이미 다들 잘 알고 계실 것 같습니다.
최대인 순간은 바로 나오지 않아서 계산을 좀 해줘야 하지만, 최소인 순간은 분명하죠. 기울기인 양수 a가 최대인 순간과 y절편인 음수 b가 최소인 순간이 일치하는데, 다음과 같이 양쪽에 동시에 접할 때입니다.
(그림 출처: ebs)
일단 대칭에 의해 x절편이 3/2인 걸 캐치한 상황에서, 접한다는 정보를 이용해 a를 구해야 합니다. 이때 앞서 알려드린 소소한 테크닉을 이용해볼게요. 그림에서 표시된 t가 3/2보다 1만큼 큰 5/2겠죠. x=5/2일 때 f(x)의 함숫값은 루트 e입니다. 따라서 이 순간에 a는 루트e네요.
물론 s를 이용해서 구하셔도 됩니다. s의 경우에는 x좌표가 1/2이 되겠죠. g(1/2)= -루트e니까 기울기는 루트e여야겠지요. (g(x)는 아래로 그려진 상황이니까 -부호를 빼줘야 합니다.)
어찌됐건 직선을 이렇게 완성할 수 있겠습니다. 훨씬 간편하죠!
평행이동뿐만 아니라 확대축소됐을 때에도 이런 정보를 뽑아낼 수 있습니다.
이 함수의 경우에는 x축 위에 (a,0)에서 접선을 날렸을 때, 그보다 x좌표가 1/5만큼 큰
이 점에서 접점이 생기겠죠. 함수가 5배 축소되었으니 앞서 말씀드린 1차이난다는 경향성도 5배 축소하여 1/5이 되었다고 생각하시면 되겠습니다. 주의할 점이 있다면, 이때는 미분계수도 5배를 해줘야 하겠네요. 그래서 식을
다음과 같이 써낼 수 있습니다. 근데 이건 실수 가능성도 있어보이니(???: 아 ㅆ 5배 안했다) 이건 검토용으로 사용하시면 좋을 것 같습니다.
이 특징은 y= lnx 에서도 당연히 읽어낼 수 있겠죠. 대신 1 차이 난다는게 x축이 아니라 y축의 얘기로 바뀝니다.
e의 x승 놈을 뒤집은 거로 봐도 괜찮고, lnx의 도함수가 1/x이란 것에 착안하여 기울기 해석을 하셔도 됩니다. (기울기가 1/m라는 것은, x축으로 m 증가할 때 y축으로 1 증가한다는 뜻!)
한편, 다음과 같은 의문이 드실 수 있습니다. "왜 하필 e^x에서만?"
적절한 의문이죠. 사실 이 얘기는 모든 지수함수에 대해 가능합니다.
얘도 원함수와 도함수가 상수배 차이나는 꼴이므로 다음 정보를 이끌어낼 수 있습니다.
a=e일 때는 저 차이가 1이 되었던 거죠.
준비한 내용은 여기까지입니다. 원함수와 도함수가 관계되어있다는 지수함수의 성질을 이용한 재밌는 해석이었다고 생각합니다. 앞으로도 재밌는 칼럼과 자작문제 많이 보여드리겠습니다. 유익했다면 좋아요 부탁드리고, 팔로우 해두셔서 꼭 확인해보세요!
0 XDK (+1,000)
-
1,000
-
누가 더 백분위 높을것같으신가요?투표좀 부탁드립니다
-
ㅈㄱㄴ 나루토 한권 읽고오겠음
-
확통이랑 13점차 12점차 나서 미 85= 확 100 당해서 상층 누백 자리에...
-
점메추 2
ㄱㄱ
-
경희대 수리논술 0
1-1 맞고 1-2 풀이만씀 2번 기하 공부안해봐서 기본적인 곡선구하기만 씀...
-
gogo
-
하버드 인증한다 2
-
88인게 행복할 수 있는 사람들도 있음
-
집앞벤치 입갤
-
86~89 중에서
-
엽떡 기다리며 무물하기 16
-
사문 39점인데 사문 2가 떠야 최저를 맞추는데 다들 어떡하셨을 건가요? 일단...
-
할일도없고
-
84가 될 확률이랑 92가 될 확률이 비슷해보임
-
고3 담임 쌤이 상담 때 말해줌
-
마음껏 해주세요 수위제한X
-
근데 다들 저 모르실듯
-
배신한 아내에 재산 빼앗긴 '퐁퐁남'…근조화환 뜬 네이버 결국 3
여성혐오 표현으로 논란을 불렀던 아마추어 웹툰 ‘이세계 퐁퐁남’이 네이버웹툰...
-
엽떡 맛있당 1
굿
-
그럼개꿀인데
-
#~#
-
오늘 오전에 열린 의협 비대위 브리핑에서도 협회장이 신입생 모집정지를 외치셨는데,...
-
배고프신분? 8
으히히히히히히히히히
-
이러다가 쪄 죽겄다
-
폰잘알 있나요? 4
지금까지 쓰던건 아이폰11이고 이제 16 or 16Pro 갈아탈려고 하는데 어떤게...
-
essence 12] 같은 단어를 대상으로 형태적인 차이를 만드는 이유, inflection에 관하여 0
같은 단어를 대상으로 형태적인 차이를 만드는 이유는 무엇일까요? 텍스트에서 단어의...
-
그래서 s뱃만 보면 너무 부러움
-
바로 스카로 출발
-
헤헤
-
올해 확통 1등급 비율.. 0.5퍼는 되려나
-
기하 질문 4
기하 단원마다 독립적인가요? 아니면 앞단원 학습 안하면 뒷단원 못하는 구조인가요?
-
닭강정먹고싶다 10
ㄹㅇㄹㅇ
-
시루스 등장 4
컨버전스홀 3층 어딘가
-
습하습하~ 2
습하손익 습하손익 어~
-
제가설의를꿈꾸어도될까요 10
우우 미필5수지사약따리 수학86점영어2지II2등급따리도 +1수로 설의를...
-
이걸 직업으로하긴 좀 그렇지만 알바하긴 괜찮은듯. . 한번시킬때 3,4천원이니 ㅋㅋㅋ ㅠ
-
사탐 백분위 99 95 인데 어떤게 유리?
-
최소한 팩트로 훌짓을 하든지 말같지도 않은 소리 좀 하지마라 다른거 다 그렇다 쳐도...
-
교차해서 온 협문에 희망은 없다.. 사실 근데 연뽕 고뽕 차고 싶으면 와도 됨...
-
하 벽느꼈다.. 4
같은반 친구가 올해 수능 수학시험지 가져와서 30분컷내고 다맞추는거보고 심란해짐..
-
학교에서 진행하고 있는 프로젝트인데, 주제가 수능 관련된 것이라 오르비언들의 힘을...
-
이원준<<국어강사goat
-
마킹 실수함 0
미적분 풀거 다 풀고 검토하는데 미적 24번을 잘못 계산한거임.그래서 그걸...
-
라는 생각을 하는 중
-
화작87 1
2될만한가요? 희망이 있을려나요 ㅜ
-
그건 바로 ‘천원돌파 그렌라간’ 진지하게 자기계발서 10권 읽는 것보다 이 애니...
-
이걸 어케 예측하지 22수능 기준 백분위 나쁘진 않은 12211이 고대 어문 꼬랑지...
-
지난주 떠올려보면 국어 파본 볼 때 가나형 앞으로 온거 확인하고 순서 조정하려고...
-
심심한데저한테질문을해주세요
-
맥도먹어야지 0
기분이 안좋을땐 맥도날드야
오늘도 개ㅊ를 벅벅
오우쉣
ㄷㄷ
무슨 말인지 이해 못하는 문돌이들 개추 ㅋㅋㅋ
무민귀여워요
으악 미적이다
으악악
아니 ㅅㅂ 이게 뭐지.,?