칼럼5) 생각보다 많이 하는 실수
게시글 주소: https://orbi.kr/00062060001
아래 카톡은 제가 부방장으로 운영하고 있는 오픈채팅 질문방입니다.
진짜 생각보다 많이 하는 실수 ㅎㅅㅎ
여러분도 한 번 두 함수가 어떻게 그려질지 상상해보셔요. 직접 그리셔도 좋습니다.
(x가 한 1000쯤까지는 표현되게끔 큰 스케일로요!)
(더 내리면 답)
아마 셋 중 하나를 생각하셨을 겁니다.
유형 A: 아래 그림처럼 가까워 지지 않고 위 아래로 간격을 유지하는 느낌
유형 B: 아래 그림처럼 서로 가까워지는데 만나지는 않는 느낌
유형 C: 아래 그림처럼 가까워지다가 교차함
위 카톡에서 3컷 판독기 님은 유형 A를 그려주셨습니다. 답은 B입니다.
아니 평행이동한건데 B처럼 가까워져도 되는건지, 오히려 A처럼 간격을 유지해야 하는게 아닌지 의문이 드실수도 있습니다.
혹시나 A같은 느낌을 상상하셨다면, "x축 평행이동"에 대해 다시 생각해볼 필요가 있습니다.
다음과 같이 x축 방향으로만 100씩 차이나면 되는 것이지, 위아래 간격을 유지해야할 필요는 없는 것이죠. 로그함수 특성상 x축 간격을 유지하다보면 위아래로는 점점 가까워질 겁니다. 이유를 잠깐 짚고 넘어가자면,
지수함수에서 x값이 늘어남에 따라 미분계수가 급격하게 커지므로 로그함수의 경우에는 미분계수가 급격하게 0에 가까워집니다. (하지만 절대 0이 되진 않죠)
두 함수 위에 각각 점 A(a,log_3 a), B(a,log_3 (a-100) ) 두 점을 찍었다고 해봅시다. B가 더 아래에 있는 셈이죠. x=a인 곳에서 두 함수가 어떤 상태에 있는지를 관찰해보면, log_3 x 그래프가 점근선에서부터 더 많은 거리를 달려왔습니다. 미분계수가 더 0에 가까운 거고, 즉 더 flat 한거죠. 그래서 y좌표 차이가 줄어들게 됩니다.
그럼 왜 만나지는 않는지가 궁금하실수도 있습니다.
두 함수가 교점을 가진다는 것은 같은 x값에 대해 같은 y값을 가짐을 의미합니다. 로그함수는 증가함수이기 때문에 어떤 y값을 가지는 x가 하나만 존재하는데요,
log_3 x 함수 위의 어떤 점과 같은 y값을 가지는 log_3 (x-100) 위의 점은 하나만 존재하는데, 그 놈이 x축 양의 방향으로 100만큼 가버린 셈이죠. 그러니 절대 교점이 생길 수 없습니다.
수식적으로 써보셔도 괜찮습니다.
당연히 없겠죠!
(+내용추가)
Ha_Rua 님께서 그래프 그린 걸 댓글에 올려주셨네요. 보시다시피 A유형과는 차이가 큽니다.
혹시나 이런 함수를 그릴 상황이 왔을 때, 조금도 헷갈리지 말고 그림을 잘 그려내시라고 글을 써봤습니다.
어떻게 보면 이게 문제를 맞고 틀리고를 결정하는 부분은 아니긴합니다.
근데 제가 처음 지수로그 배우고 나서 이런걸 그릴 상황이 왔을 때 어떻게 그려야 하는가에 대해 고민을 했었던 경험이 있어서, 좀 정확히 그리는걸 원하시는 분들을 위해 써봤어요ㅎㅎ
참고로 글에 사용한 카톡 유저 분들께는 전부 허락을 받았습니다.
준비한 내용은 여기까지입니다. 오늘 글은 좀 가벼웠죠! 다음에 더 좋은 글로 찾아뵙겠습니다.
팔로우해두시면 재밌는 자작문제와 칼럼을 놓치지 않고 확인하실 수 있어요ㅎㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
주인공 부모 세대는 20대부터 중년 배우를 쓰고 주인공 세대는 청/장년->중년으로...
-
영어, 수학, 지구과학만 챙겨야지 화학 생명 문학은 하루전에 벼락치기
-
님들?
-
ㅋ ㅋㅋㅋㅋ ㅋㅋ ㅋㅋ 가령말이지 1970년대 라는 말을 하면 년대?...
-
약한영웅보는데 0
이사람 ㅈㄴ잘생겼어
-
왜냐면 집에서 나온순간부터 뛰었음
-
공부를 열심히하면 정치에 관심이 없어지는 이유를 암? 2
왜냐면 ㅋㅋ ㅋㅋ ㅋ 중도 를 좋아하니깐 ㅋ크하하하하하하하하하하하
-
언제죽지 1
하 시발 일 하나 줄여야지
-
졸려.. 0
더 자고싶다..
-
메이드 대학보내고 난 집에 잇는거임
-
비추인가요? srt 타면 1시간 조금 넘게 걸리긴하는데 .. 지방러라서 ㅜ...
-
결국잠못잠 1
-
옯쟝 하잇 4
나니가스키
-
아니지 노천극장 똥군기짤 등등 박제될만한 건 다 돌아다녔는데도 연고대 입학과는 일절...
-
[스포] 28 수능(예시) 국어 독서 사회·문화 지문 복습시 참조 1
안녕하세요, 디시 수갤·빡갤 등지에서 활동하는 무명의 국어 강사입니다. 어제 발표된...
-
나스닥 파멸적 숏
-
어젠 인증 떡밥도 안돌았는데 ㅅㅂ
-
이번 3모에서 수학 미적 백분위 95정도 나왔는데요, 현장에서 12번 계산실수,...
-
제발 들어봐요 안죽어요
-
교사경 모음인 거 같은데 어떰? 평가원은 카나토미랑 수분감 풀어서 충분한디
-
이 사람 강의력이랑 단권화 전략 예사롭지 않음 이미 윤리 1타지만
-
혼자 공부한다고 하는데 시간만 오래 걸리고 선지 판단과 지문 분석이 너무...
-
얼버기 혈서 0
-
더 자고싶다 0
-
먹어도 괜찮...겠죠..?
-
물리 시험 두번을 치기 위해서 계산기에 돈을 태운다..??? 싼 거라도 사야하나 그냥
-
얼버기 0
부지런행
-
물리화학이 어렵게나올텐데 배기범이나 화학1타가 통과1타하려나
-
실검 2위 뭐임 8
-
확통말고 기하나 삼각함수 미분은 배울수없는거임? 인강도 없고 대학가서만 배울수있나 좀 아쉽군
-
써먹지도 못할내신 버려야지 1.9 아깝긴한데 뭐 어쩔수있나...
-
아 일교시 0
개빡이네
-
급하게 나오느라 ㅜㅜㅜㅜㅜ 또 하나 사야되네 이렇게 산 라이터만 집에 30개다
-
이별이란…
-
ㅇㅂㄱ 12
다들 화이팅이에요
-
그냥 전범위 실모데이인거지 뭐~
-
확통은 할 줄 몰라요... 예비시행은 확실히 계산이 거의 없네요 풀이랑 코멘트...
-
D-1 6
마지막까지 달린다
-
행님덜 강기원쌤 복영 어케 구매해야 하는 건가유.. 시대인재에 전화해야 할까여 무서운데 ㅠㅠ
-
그냥 돌려서 잘생겼다고 말하더라 실제로 나존잘인데 직접적으로 잘생겼다고 못들음
-
더 좋은 대학 뱃지 있는데 낮은 대학 끼는 이유가 먼가요 3
순수 궁금증
-
그러게 근데 나 물리 마스터하고 싶었오
-
하하 내일이면 하하 중간고사가 끝나네요 하하하하하하ㅏㅏㅏ 기다려라 당장 노래방부터 간다
-
머리아파서 잠이 안오네여ㅡㅡ..ㅠ
-
25수능 미적 20 21 22 28 29 30 틀렸는데 확통하는게 나을까요? 29...
-
아 자기싫다 2
근데 안 자도 할 게 없어
-
현역 고3입니다 3모 보고 나서부터 제정신이 아닌 느낌으로 사는 것 같아요 그래도...
wow
헉
헉!
헉 왜 지우셨어요 ㅠ
일단 수상하가 무조건 1순위고, 이게 충분할 때 수1 들어가시면 좋을 거 같아요. 아무튼 수1을 좀 건드려보기로 결정하셨다면 자이스토리 추천드려요 :)
헉 감사합니다
칼럼에 이런 댓을 다는 게 좀 그런거같아서 ㅋㅋ

쪽지 확인했습니다항상 감사합니다
사실 C만 아니면 별로 상관은 없

그쵸 이게 문제를 맞고 틀리고를 결정하는 부분은 아니긴합니다.제가 처음 지수로그 배우고 나서 이런걸 그릴 상황이 왔을 때 어떻게 그려야 하는가에 대해 고민을 했었던 경험이 있어서, 좀 정확히 그리는걸 원하시는 분들을 위해 써봤어요ㅎㅎ
2번처럼 그렸어요!
근데 사실 문제 풀 때 로그 스케일 엄청 뒤쪽은 필요한 경우가 거의 없어서 A처럼 그렸던적도 있는것 같아요

가까운 구간에서는 A처럼 그려도 아무런 문제가 없죠 ㅎㅎ와 뭐지 낚였다

낚시 성공!로그함수는 결국 y축쪽에서 수렴을 하니까 평행이동을 해도 나중에는 서로간의 y축쪽 간격이 줄어든다는 뜻인가요? 잘보고갑니다!
아닐걸요??
지수함수에서 x값이 늘어남에 따라 미분계수가 급격하게 커지므로, 로그함수의 경우에는 미분계수가 급격하게 0에 가까워집니다. (하지만 절대 0이 되진 않죠)
두 함수 위에 각각 점 A(a,log_3 a), B(a,log_3 (a-100) ) 두 점을 찍었다고 해봅시다. B가 더 아래에 있는 셈이죠. x=a인 곳에서 두 함수가 어떤 상태에 있는지를 관찰해보면, log_3 x 그래프가 점근선에서부터 더 많은 거리를 달려왔습니다. 미분계수가 더 0에 가까운 거고, 즉 더 flat 한거죠. 그래서 y좌표 차이가 줄어들게 됩니다.
헉
헉!
당연히B지하면서들어온

이게 에피...ㄷㄷ예전에 혼자 생각해봤던 거였는데 아는 내용이 나오니까 좋네요!!

앗 그거 어떤 느낌인지 알죠ㅎㅎ앞으로도 좋은 글 많이 써보겠습니다!
저렇게 카톡으로 물어봤으면 나도 A했을거같은데 본문에서 수학 많이 하는 실수 이러니 유심히 생각해서 B고름 ㅋㅋㅋ
싱기방기
본문에 추가했어요! 그림 감사합니다 ㅎㅎ
항상 좋은 칼럼 감사합니다!