[Team PPL 칼럼 71호] ‘경우의 수’ 단원을 얕보지 말자
게시글 주소: https://orbi.kr/00062006126
우리는 중학교, 고등학교에서 적어도 두 번, 많으면 세 번까지 경우의 수를 세는 단원을 접하게 됩니다. 중학교 2학년과 고1의 수학 (하)에서 한번씩, 또 선택과목 확률과 통계에서까지 말이죠. 그런데 이때 배운 개념과 사고과정들은 실제로는 해당 단원이 아닌 곳에서도 빈번하게 쓰이고 있습니다. 합의 법칙과 곱의 법칙에 대한 내용을 정확히 이해하고, 다른 단원의 문제에 사용된 것을 통해 해당 개념의 중요성을 다시 일깨워 보는 시간을 갖도록 합시다.
# 왜 ‘더하기’인가요?
합의 법칙의 내용은 다음과 같습니다.
두 사건 A와 B가 동시에 일어나지 않을 때, 사건 A가 일어나는 경우의 수가 m, 사건 B가 일어나는 경우의 수가 n이면
(사건 A 또는 사건 B가 일어나는 경우의 수)=m+n
이다.
단순한 내용 속에서 우리가 이해해야 하는 본질은 다음과 같습니다:
두 가지 상황이 ‘동시에 일어나지 않으면’ 각각의 경우를 분리해서 구해야 한다.
보통 위의 내용을 이해하는데 어려움을 겪는 경우는 그렇게 많지 않습니다. 그런데, 문제에서 사용될 때는 이야기가 조금 달라집니다. 아래의 문제를 보시고, 이어서 설명드리겠습니다.
예시 1. 한 개의 주사위를 던질 때 나오는 눈의 수가 2 이하 또는 5 이상인 경우의 수를 구하시오.
쉽죠, 2 이하인 눈은 1, 2의 2개, 5 이상인 눈은 5, 6의 2개이므로 합쳐서 4입니다.
두 번째 예시는 어떨까요?
예시 2. 2023학년도 6월 모의평가 (공통) 12번
해당 문제는
조건 (가)에서 와 의 부호가 반대이므로 , 이어야 하는 조건을 이끌어낸 뒤,
조건 (나)에서 의 부호가 어떤지에 따라 경우를 나누어 구하는 문제입니다.
상황에 따라 계산할 식이 달라지기 때문에, 경우를 나누어 따로 구해야 할 필요성을 인지하지 않으면 문제를 제대로 풀 수 없습니다. 위의 예시 1과 같은 문제를 풀어오면서, 예시 2와 같은 문제를 풀 때 상황을 나눠서 푸는 것에 익숙해져 있다면 절댓값 같은 상황에 더 유연히 대처할 수 있지 않을까요.
# 동시에 안일어났는데요? ‘곱의 법칙’
곱의 법칙의 내용은 다음과 같습니다.
사건 A가 일어나는 경우의 수가 m, 그 각각에 대하여 사건 B가 일어나는 경우의 수가 n이면
(두 사건 A와 B가 동시에 일어나는 경우의 수)=m n
이다.
여기서는 ‘동시에 일어난다’ 라는 표현에 주목할 필요가 있겠습니다.
보통 일반적으로 이야기하는 동시라는 표현은 같은 시점에 발생하는 두 가지 일을 이야기 하지만, 여기에서 동시라는 표현은 이렇게 이해해야 합니다.
두 사건 A, B가 ‘같은 시간선상’에서 발생한다.
즉, 주사위 두 개를 동시에 던지던, 1시간의 간격을 두고 던지던, 같은 시간선상에서 두 주사위가 동시에 던져진 결과물이기 때문에, 동일한 상황으로 취급합니다.
따라서 이렇게도 해석 가능합니다.
어떤 시행의 서로 다른 m가지 결과 각각에 대하여 사건 B가 일어나는 경우의 수가 n이면,
총 경우의 수는 n을 m번 더한 것, 즉 n m이다.
우리가 곱하기를 처음 배울 때 출발한 개념과 비슷하게 이해할 수 있겠습니다. 위와 같이 이해하면, 한가지의 케이스 분리를 한 뒤 그 안에서 일어나는 또다른 케이스 분리에 대해서도 보다 쉽게 접근할 수 있을 거라 생각합니다.
뭐 가끔 이런 문제처럼 출제진까지도 생각 못한 케이스 분리가 존재할 때도 있긴 하지만요...ㅎ
예시 3. 2019년 6월 고2 모의고사 (가형) 30번
# 경우의 수를 대하는 자세는 문제풀이의 필수요건이다.
제일 단순한 실생활의 예시를 통해 수학문제를 풀 때 필요한 논리적 사고력을 키울 수 있는 단원은 분명 이 단원입니다. 실제로 출제되는 문제들 또한 미지수와 복잡한 수식들보다 일상생활에서 친숙히 볼수 있는 소재들로 구성된 문제의 비율이 가장 높기도 하고요. 해당 단원의 학습을 소홀히 하지 않고 어렸을 때 퍼즐을 풀던 감성처럼 오랫동안 고민하면서 공부하면 복잡한 문제에서도 당황하지 않고 상황을 분석할 수 있는 힘을 기를수 있을 것이라 생각합니다.
예비 고1 여러분들, 또 미적 선택을 고민중인 분들도 해당 단원만큼은 꼭 공들여 공부했음 좋겠다는 바람입니다!
칼럼 제작 | Team 수하기
제작 일자 | 2023.02.12
Team PPL Insatagram |@ppl_premium
*문의 : 오르비 혹은 인스타그램 DM
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 실수 과외생 걸리면 수학 1ㄷ1 질듯..
-
시발점이나 뉴런은 매년 새로 찍어서 올라오나요?? 찾아봐도 잘 못찾겠었어….
-
있나요? 쿠우xx나 애x리는 너무 저퀄이라 좀 비싸더라도 ㅍㅌ이상인 곳 가고싶은디..
-
선넘질받 15
약간취해서 선넘질받도가능 착한옵붕이들 질문해줘요
-
선택과목 바꿀만한 시간이 있을까 지2해보고 싶은데 언미영물2지2 마려움
-
올해 연전전 0
컷 몇 보시나요? 713중반~714 중반이면 가망 있을까요?
-
학창시절에 연애 한 번도 안 해봤네..
-
현역이때 아예 안풀어봤고 위험한 1임 메디컬 노릴거라 영어 1 안정 되야되는데...
-
ㄷㄷㄷ
-
물2 입문했는데 질문 12
1. 일단 방인혁t 교재 주문했는데 필수본도 사는게 좋을까요? 2. 현정훈 수업은...
-
갑자기 화가난다 13
누구하나 잘못걸리기만해봐.
-
올해 독학으로 4 --> 2로 올렸는데 사실 작년에 강민철 쌤 커리 현강으로까지...
-
화작선택하고 독서문학 공부시간 확보하는게 더 나을것같아요
-
우크라이나,“러, ICBM 발사”...미·영 지원 미사일 본토 공격에 대응 나선 듯 2
우크라이나와 러시아의 전쟁 확전 움직임이 심상치 않다. 미국에 이어 영국도 러시아...
-
예를 들어 원광대 의대면 1. 원광대 다녀요 -> 과 물어보면 의대라고 대답 2....
-
수학 달린다
-
대부분 대학교에 다닐때가 정말 행복한 시기였구나... 15
라는 사실을 취업하거나 회사에 다니면 알게됨
-
물2 교재 주문했다 12
주사위는 던져졌다...
-
지금 진학사나 고속에서 나오는 결과들이 아직 과탐 가산점같은 변표는 반영안한건가요?
-
미친 건가
-
또 살짝 바뀔려나 가장 가능성 커보이는건 발음시 음절끝소리 규칙 최우선 적용?
-
물1vs경제 9
뭐가 더할한함? 물1 첫번째 부터 막힘..
-
이거에서 연경영 가는애가 있음?
-
영화 히든페이스 16
공폰줄 알고 들어왔는데 딴 내용이었슴.. 20분정도 있다 못참고 나와버림 돈날렸네
-
학교쌤이 열공하라고 남은 수능샤프 주셨는데 내년에도 이 샤프일까요?
-
올해 남은기간 0
비문학 특강이랑 올오카 오리진으로 마무리하고 내년에 평가원 전개년 혼자서 분석해야지
-
삼반수 0
안녕하세요 이번 수능 언미영생지 대략 43334나왔고 삼반수 할 생각인데 어떤...
-
유#게# 2
아###
-
작년에 성대가 0
영어1,2등급 똑같은 점수 준 게 처음이었죠? 영어 졸라 어려워서 갑자기 뜬금포로...
-
나 한번만 빌려줘 꼭 돌려줄게
-
3개월동안 일주일에 3시간만 공부하고 과탐 1등급 맞기 7
*공부법은 사람마다 달라질 수 있으며, 정답이 없다는 것을 알려드립니다. 모든...
-
맘편히 공부하게 되는구만 ㄹㅇ
-
부엉이에서 수학 영어 브릿지 많이 주웠는데 1월부터 토요일마다 푸는거 어떻게...
-
진짜눈물이다나네요 기대도안했건만
-
친구들 많이 망했던데 사탐
-
ㅈㄱㄴ
-
올만에 풀려니까 은근 빡세네
-
앙 앙 기모띠 ㅋㅋㅋㅋㅋ 앙 기모띠 ㅋㅋㅋㅋ
-
수능 전에 진짜 존나불안했는데
-
이게무슨
-
할 게 없엉..
-
한녀다같이 연대해 퓨ㅠㅠㅠ 한남 다 없어졌으면 하긔
-
30분은 미뤄야겠네
-
모든 입시 사이트가 다 작년처럼 잡고있나요
-
5년즈음 후면 쟤들도 알게될텐데 사는게 얼마나 드럽고 무서운건지를
-
소문으로는 영어강사라던데
-
1월부터 일주일에 한 번씩 실모 풀어보려하는데 이감, 상상, 바탕 등.. 이런...
-
12.07 뉴진스 12.08 악뮤
시러시러 경우의수 시러요 마니시러