RC - [수학Ⅱ] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (2/3) >
게시글 주소: https://orbi.kr/00061810441
[목차]
1. 다항함수의 도출
2. 다항함수의 도출을 위한 정보
(1) 다항함수 f(x)의 인수가 주어진 경우
① 다항함수 f(x)에 대하여 f(a)=0인 경우
② 다항함수 f(x)에 대하여 f(a)=0, f’(a)=0인 경우
③ 다항함수 f(x)에 대하여 인수 (x-a)의 개수
(2) 다항함수 f(x)의 주어진 정보가 직선 위에 있는 경우
① 다항함수 f(x)의 주어진 정보가 상수함수 y=k 위에 있는 경우
② 다항함수 f(x)의 주어진 정보가 일차함수 y=px+q 위에 있는 경우
3. 다항함수의 이해: 다항함수의 함숫값
(1) 함수 f(x)의 개별 근에 대한 정보가 주어졌을 경우
① 개별 근에 대한 정보가 y=k 위에서 주어졌을 경우
② 개별 근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
(2) 함수 f(x)의 n중근에 대한 정보가 주어졌을 경우
① n중근에 대한 정보가 y=k 위에서 주어졌을 경우
② n중근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
------------------------------------------------------------------------
[이전 칼럼]
RC - [수학Ⅱ] 삼차함수 네모박스 < 00 INTRO (+ 자기소개) >
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 (1/3) >
------------------------------------------------------------------------
※ 수학Ⅱ 문제는 함수의 모양을 정확히 파악하는 것이 중요합니다.
머릿속에 그래프를 그려낼 수 있을 만큼 그래프 개념에 숙달되신 분이 아니라면,
반드시, 옆에 노트 등을 두고 그래프를 그리며 내용을 따라오십시오.
권장사항이 아니라, 필수사항입니다.
------------------------------------------------------------------------
이전 칼럼
[수학Ⅱ칼럼] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (1/3) >
에서 이어집니다
(2) 다항함수 f(x)의 주어진 정보가 직선 위에 있는 경우
① 다항함수 f(x)의 주어진 정보가 상수함수 y=k 위에 있는 경우
수능 문제가 매우 친절하게 다항함수 f(x)의 근에 대한 정보를 직접적으로 제공할 수도 있지만,
그렇지 않고 근에 대한 정보를 간접적으로 제공할 수도 있습니다.
그 방법 중 하나가 근에 대한 정보,
즉 다항함수 f(x)에 대해 x축(y=0) 위의 정보를 주는 대신
상수함수 y=k 위의 정보를 주는 것입니다.
이때, 우리는 (1)-①에서와 유사한 방법으로 정보를 정리할 수 있습니다.
예를 들어, 삼차함수 f(x)에 대해 f(3)=3이라는 정보가 주어져 있을 경우,
f(x) = ax³+bx²+cx+d , 27a+9b+3c+d = 3
으로 정리하는 대신
f(x) = (x-3)(px²+qx+r)+3
와 같이 나머지 정보를 정리할 수 있다는 것이지요.
해당 개념을 활용해 예제 하나를 풀어 봅시다.
아주 기본적인 정보 나열을 통해 해당 문제를 푸는 방법은
삼차함수 f(x) = ax³+bx²+cx+d 에 대해
f(0) = -3 이므로 d = -3
f(1) = 3 이므로 a+b+c+d = 3, a+b+c = 6,
f(2) = 3 이므로 8a+4b+2c+d = 3, 8a+4b+2c = 6, 4a+2b+c = 3
f(3) = 3 이므로 27a+9b+3c+d = 3, 27a+9b+3c = 6, 9a+3b+c = 2,
이므로
두 번째 식과 세 번째 식에서 (4a+2b+c)-(a+b+c) = 3a+b = -3
두 번째 식과 네 번째 식에서 (9a+3b+c)-(a+b+c) = 8a+2b = -4, 4a+b = -2,
(4a+b)-(3a+b) = a = (-2)-(-3) = 1
3a+b = b+3 = -3, b = -6
a+b+c = c+1-6 = c-5 = 6, c=11
f(x) = x³-6x²+11x-3 , f’(x) = 3x²-12x+11,
f’(4) = 48-48+11 = 11 (Q.E.D.)
와 같습니다.
그런데, f(1) = f(2) = f(3) = 3 이라는 정보를 단순한 정보가 아니라
f(x)의 근에 대한 간접정보로 이해하게 된다면 풀이가 확 달라지게 됩니다.
g(x)=3 , h(x)=f(x)-g(x) 로 새로운 함수를 정의해 봅시다.
그러면 다음 정보를 활용했을 때
h(1) = f(1)-g(1) = 3-3 = 0
h(2) = f(2)-g(2) = 3-3 = 0
h(3) = f(3)-g(3) = 3-3 = 0
가 되므로, 해당 함수 h(x)에 대해
h(x) = f(x)-g(x) = f(x)-3 = a(x-1)(x-2)(x-3) 으로 정리할 수 있고,
이를 다시 f(x)에 대해 정리하면
f(x) = a(x-1)(x-2)(x-3) +3 으로 정리할 수 있습니다.
이렇게 정리하고 나면 위의 풀이가 다음과 같이 달라지죠.
f(0) = a×(-1)×(-2)×(-3)+3 = 3-6a = -3, a=1
f(x) = (x-1)(x-2)(x-3)+3, f’(x) = (x-2)(x-3)+(x-1)(x-3)+(x-1)(x-2)
f’(4) = 2×1+3×1+3×2 = 11 (Q.E.D.)
위의 문제는 애초에 그렇게 어려운 문제가 아니기 때문에
굳이 문제를 이렇게 풀어야 하는지에 대한 의문이 있을 수도 있겠지만,
이러한 정보를 활용하는 방법은 후반에 삼차, 사차함수 고난도 문제를 풀 때 빛을 발합니다.
‘극댓값 또는 극솟값’에 대한 정보가 나왔을 때 이를 유용하게 사용할 수 있죠.
예를 들면,
“최고차항의 계수가 1인 삼차함수 f(x)가 x=3에서 극솟값 4를 갖는다”
와 같은 발문이 있을 경우,
해당 개념을 완벽히 숙지하고 있고 활용이 가능한 상태일 경우
해당 함수를 바로
f(x) = (x-3)²(x-k)+4, (k<3)
과 같은 방식으로 정리할 수 있는 것입니다.
(자세한 설명을 일부러 적지 않을 테니, 한번 머리를 굴려서 시도해 보시기 바랍니다.)
② 다항함수 f(x)의 주어진 정보가 일차함수 y=px+q 위에 있는 경우
x축과 평행한, 즉 기울기가 0인 직선인 상수함수 y=k 위의 정보뿐 아니라
기울기가 0이 아닌 직선인 일차함수 y=px+q 위에 대한 정보가 주어졌을 경우에도
위와 같은 방식을 활용할 수 있습니다.
특히 함수의 접선과 관련된 문제가 나왔을 경우 해당 개념을 유용하게 활용할 수 있죠.
y=f(x)의 x=a에서의 접선 y=g(x)는 by definition,
f(a)=g(a)이고 f’(a)=g’(a)인 직선입니다.
( 접선의 방정식: y = f’(a)(x-a)+f(a) )
따라서 새로운 함수 h(x) = f(x)-g(x) 를 정의한다면 h(x)는
h(a) = f(a)-g(a) = 0, h’(a) = f’(a)-g’(a) = 0 이라는 특징을 자동으로 만족하게 되지요.
바로 예제를 풀어 봅시다.
최고차항의 계수가 1인 삼차함수 f(x)의 x=2에서의 접선 g(x)는
점 (-1, 1)과 점 (2, 4)를 지나네요.
x증가량이 3, y증가량이 3이므로 직선의 기울기는 1, y절편은 2입니다.
즉, g(x) = x+2 이다.
또한, f(x)와 g(x)의 그래프가 x=2에서 접하고 x=-1에서 만나므로
h(x) = f(x)-g(x) 에 대하여 h(x)는 최고차항의 계수가 1인 삼차함수이고
h(2) = 0, h’(2) = 0, h(-1) = 0 입니다.
따라서 h(x) = f(x)-(x+2) = (x-2)²(x+1) 이고,
f(x) = (x-2)²(x+1)+(x+2), h(0) = (-2)²×1+2 = 6 (Q.E.D.)
이 되겠습니다.
위 내용은 정말
매우매우매우매우매우매우매우매우매우매우 중요하니
꼭 제대로 숙지하실 필요가 있겠습니다.
지금 보기에는 그렇게 어려운 개념이 아닌 것처럼 보일 수도 있고
많은 분들이 이미 어렴풋이 알고 있었던 내용이기도 하겠지만,
해당 개념 및 풀이 방식을 완벽히 이해하고 활용할 수 있을 때
추후 등장할 삼차함수 및 사차함수의 고난도 문제에 효과적으로 접근할 수 있습니다.
만약 수능 수학 고득점을 목표로 하시는 분이시라면,
반드시 해당 내용을 정독하며 복습하고,
다양한 접선 문제들에 적용하여 풀어보시기를 바랍니다.
------------------------------------------------------------------------
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 >
칼럼은 중요한 내용이 너무 많고 전달해야 할 정보도 많아
가독성 및 여러분들의 지구력을 위해
총 3개의 게시물로 작성될 예정입니다.
해당 내용은 단순히 삼차함수 관련 문제를 풀 때뿐만 아니라
모든 수학Ⅱ 문제를 관통하는, 수학Ⅱ 이해의 뿌리가 되는 내용이니만큼
해당 내용을 눈 감고도 머릿속으로 떠올릴 수 있을 만큼
철저히 숙지해두시기를 바랍니다.
댓글과 좋아요 등으로 많은 분들이 유익한 글 볼 수 있도록 도와주시면
글을 작성하는 저에게도, 수능을 함께 준비하는 동지들에게도 큰 힘이 됩니다.
위 내용에 대한 질문이 있으시다면,
사진 등으로 질문 및 피드백이 불가능한 쪽지보다는
제 프로필에 있는 오픈채팅 링크로 들어와 주시면 감사하겠습니다.
다음 칼럼의 주제는
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 (3/3) >
(링크)
입니다.
빠른 시일 내에 돌아오도록 하겠습니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
- 강사로서 더 이룰것은 없음 - 쌓아놓은 재산만도 3대가 다 못 씀 - 사교육...
-
성경공부부터 해서 서양문화의 뿌리가 결국에는 크리스트교니까 재밌을 거 같음 그리고...
-
재밌을 듯
-
찣칠라 대항마로 0
안철수말고는 답 없는듯
-
사문 개혁안 0
도표는 복지제도 유부노 계층이동 여성임금 빈곤율 이렇게 5개 넣고 나머진 양적연구...
-
원문 바로가기 :...
-
급9
-
저런 함수인걸 숨기고 그걸 찾는데 끝났으면 그저그런 문제였을텐데 문제세팅으로 방향성...
-
물2 브릿지 1
시대인재 올해 2026 물2 브릿지등 자료들은 어케받는거에요? 단과 열린게 없던데
-
뉴진스 2
이제 보내줘야겠다ㅜㅜ 인스타 소개글에 뉴진스의 하입보이요 해놨는데 지워야디...
-
생2 반응식 0
생2 세포호흡 반응식 계수 암기 팁 있나요? ㅠㅠ 기출에서 왕왕보이는데 나올때마다...
-
잉잉
-
나니가~ 스키?
-
에휴이
-
기요미 물리 2
마구마구 함락시키기
-
국힘 대선후보로 민주당 이재명이랑 맞짱뜰 상대로...
-
냉전 끝난 직후가 아니었을까 하는 생각이 가끔 듦 공산독재 국가들 훅훅 무너지고...
-
집 근처 독재에서 재수하고 있는 학생입니다. 신경과민(예민), 불안, 강박 때문에...
-
몇년전에 산 양장본.. 무슨 기념 특별인쇄?라고 한 거 같은데..
-
괜히 뺏긴기분이고 질투나
-
https://www.reddit.com/r/50501/comments/1js9lok...
-
첫 정답자 3000덕 드리겠습니다! 전 글 어그로가 이렇게 많이 끌릴줄은... +...
-
당황스러웠음 대체 뭐임?
-
내아이민이어때서 2
어떻긴 틀딱..
-
허접아
-
레어 뺏김 3
-
안녕하세요. ‘수능을 수능답게, 수학을 쉽게 보는 방법’의 ‘이다정’입니다. 이제...
-
내멋대로 이미지 써드림 19
-
오늘은 잠을 너무 못자서 좀 일찍 왔네용
-
너무 한산해짐.. 6모까지 존버 ㄱㄱ
-
댓으로 신청좀요 아니면 원하는 주제라도 써주십셔 지금 교재 작업 하다가 약간...
-
소개좀
-
그냥 우울턴 올 때 마다 안쓰러워 뷰였는데 이젠 공격성이 불특정 외부대상까지 뻗치네
-
볼거냐? ㅈㄱㄴ 수특 레벨3도 있음
-
어떤가요 컴팩트해서 고려중인데.. 1목표에요
-
아 씨발 0
골반이 왜 갑자기 아프지
-
ㄹㅈㄷ던데
-
^^... 이렇게 진도가 안나가냐 미치겠다 ㄹㅇ
-
확통런 1
지금 4월인데 미적 개념 반정도함 확통런 할까요 (수학 1등급목표)
-
견적서 보낼 때마다 돈 드는데 뭐랄까 그냥 말 한마디만 삐끗해도 그냥 고갱님이 읽씹...
-
너무 어려운데
-
지금 시기에 풀 수 있는 국어 문제집 추천해줘 마냥 수능기출이나 수특만 풀기보다...
-
사실 드라마 합응 때 민족의 아리아 장면 끝나고 연대 쪽 단원들 표정 굳어있고...
-
올오카 컨텐츠 전체적으로 밀렸는데요 다 하기 너무 벅차서요 ㅠ 엮어읽기는 다 하되...
-
2025, 2024학년도 상지대 입시결과(수시_한의대 포함) 1
2025, 2024학년도 상지대 입시결과(수시.. : 네이버블로그
-
현우진은 수2 극한상쇄해설 이후로 믿음이 깨졌고 이창무 생각중인데 괜찮나여?...
-
독재 쌤한테 타임랩스 찍으면서 공부해도 되냐 물어보는 거 오바임? 2
우리 독재가 와파도 안 막혀있어서 1-3월엔 열심히 하다가 4월 되니까 죽을 맛임...
-
무한 로딩 걸리면서 질문으로 돌아가기 뜨는데 미치겟넹
-
교사경도 좋아요 마더텅 있는줄 알았는데 찾아보니까 없더라고요
첫번째 댓글의 주인공이 되어보세요.