칼럼1) 알아두면 쓸데있는 다항함수 적분공식 총정리
게시글 주소: https://orbi.kr/00061780620
제 첫 번째 칼럼 주제는 다항함수 적분공식 총정리입니다.
적분공식들은 계산을 훨씬 가볍게 해주고, 빠르게 점검할 수 있어서 검토용으로 쓰기에도 좋습니다.
사실 다항함수 적분 공식은 엄청나게 많습니다. 하지만 그걸 다 알 필요는 전혀 없습니다. 실전에서 쓸만한 공식 몇 가지만 체크하고 넘어가면 됩니다.
이미 아는 게 나왔다면 '아 맞아 이런게 있지~' 생각하며 복습차 확인해주시고, 처음 보는게 나온다면 '이런게 있구나 알아둬야겠네' 생각하며 읽어가시면 됩니다.
1. 이차함수
너무 유명한 공식이죠. 인지해야 할 점이 딱 두 개 있습니다.
1) 둘러싸인 넓이는 오직 x좌표 차이에만 관련이 있다!
2) 색칠한 넓이가 반띵이 되는 곳은 이차함수의 축이 아니라 알파와 베타의 중점 부분입니다. 당연한 내용인데, 가끔씩 실수가 나오기도 하므로 유의하세요.
한편, 공식은 아니지만 알아두면 정말 많이 쓰는 이차함수 넓이 관계가 두 가지 있습니다.
1) 위 경우처럼 길이비가 각각 2:1일 때 초록 부분과 파란 부분의 넓이가 같습니다. 이는 해당 적분 구간의 적분값이 0임을 의미하기도 합니다. (초록과 파란 부분의 넓이는 같은데 부호가 반대니까요.)
이는 삼차함수의 2:1 관계와 관련이 있습니다. (이 말은 이해가 안 되시면 그냥 넘어가셔도 좋아요.)
2) 위와 같이 초록색 적분구간이 이차함수의 축에서 시작할 때, 길이비가 그림처럼 1:루트3으로 만들어진다면 초록 부분과 파란 부분의 넓이가 같습니다. 이는 삼차함수의 1:루트3 관계와 관련이 있습니다.
두 경우 모두 이차함수의 최고차항 계수와 관계 없이 성립합니다.
2. 삼차함수
두 가지가 있습니다. 첫 번째는 매우 유명한 상황이죠. 직선 대신 이차함수인 경우에도 똑같이 성립합니다. (삼차함수와 이차함수가 알파에서 한 번 만나고 베타에서 접하는 경우라면 말이죠.)
이와 연관지어 생각해볼 만한 관계가 있는데요,
위 그림처럼 X좌표 길이 비가 1:3이 될 때, 초록 부분 넓이와 파란 부분 넓이가 같습니다. 사차함수의 3:1 관계와 관련이 있습니다.
두 번째가 굉장히 유용한 공식인데 의외로 잘 알려지지 않았습니다. 변곡점을 지나는 직선과, 삼차함수로 둘러쌓인 한 쪽 넓이가 다음과 같습니다. 두 쪽은 거기에 2까지 곱해주면 되겠죠. 양쪽 부분이 넓이가 같을테니까요.
3. 사차함수
역시 두 가지입니다. 솔직히 말해 이 두 공식은 요즘 평가원에선 보실 일이 없을거고(과거에는 나온 적이 있긴 합니다.) 사설이나 내신에 유용할 듯 하네요. 넣을까 말까 고민을 했으나 아는 사람은 다 안다는 공식이라 넣었습니다.
경험상 '둘 중에 뭐가 1/30이었지??!' 하면서 맨날 헷갈리는데, 공통접선 놈이 1/30이라고 확실히 알아둡시다.
4. y=xn 꼴
앞선 3개에 비하면 거의 안쓰이고, 솔직히 몰라도 됩니다만 그래도 소개해드려봅니다.
초록 넓이 : 노란 넓이 = n : 1
(각 직선들은 축에 평행하게 그려져야 하고, 최고차항 계수가 1이 아니어도 성립합니다.)
모든 n차 다항함수에 대해서 성립하지만, 사실상 수능에서는 이차함수의 경우에만 유용합니다. 삼차부터는 저도 써본 적이 없어요.
일차함수 넓이 구할 때 적분하지 않잖아요? 비슷한 느낌으로 이 공식을 알면 이차함수의 경우에는 많은 경우에 적분을 할 필요가 없어요. 모든 이차함수는 곡면아래 넓이를 저런 식으로 도출해 낼 수 있기 때문이죠.
이차함수의 경우 위 상황에서 초록부분과 노란 부분의 넓이비는 2:1이며, 이를 다음과 같이 인식할 수도 있습니다.
표시한 전체 직사각형의 넓이 x 1/3 = 곡면 아래넓이
예를 들어보겠습니다.
위 경우에서 1에서 2까지 이차함수의 적분값을 구하는 상황입니다. 첫 번째로 할 일은
표시한 부분의 직사각형을 보며, 직사각형의 넓이가 2이기 때문에 곡면 아래 넓이는 1/3 배인 2/3임을 구하는 겁니다.
그래서 색칠한 빨간 부분의 넓이는 2/3이고, 적분값은 노란 영역의 넓이인 1까지 더해줘야 하므로 답은 5/3입니다.
이와 같이 접근하면, 이차함수 적분 문제에서 적분 구간이 축을 포함하는 상황은 전부 빠르게 처리할 수 있습니다. 최고차항 계수가 1이 아닐 때도 당연히 성립합니다. 다만, 이차함수의 적분 구간이 축을 포함하지 않는다면, 대체로 그냥 적분하시는게 더 빠를 겁니다.
한편, 다음과 같은 오해를 하여 삼차함수에서 이를 쓰려고 하시는 분들도 가끔 있습니다.
"이 경우엔 3:1 ?"
은 절대 아닙니다. y=xn 꼴에서만 사용할 수 있는데, 위 상황은 그런 꼴이 아니기 때문입니다.
그런데 y=x3꼴의 적분을 묻는 경우는 거의 없잖아요? 그래서 앞서 말했듯이 삼차 이상부터는 거의 쓸 일이 없습니다.
제가 준비한 공식은 여기까지입니다. 소개드린 공식 외의 것들은 좀 과한 느낌이 있습니다.
한편 공식이 전부 '몇 분의 (b-a)의 몇 승' 느낌으로 생겼는데요, '몇 분의'에 해당하는 부분은 암기구요 '몇 승'은 쉽게 기억하실 수 있습니다. n차함수에 대해 n+1이 지수 자리로 가기 때문이죠.
칼럼은 여기까지입니다. 감사합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대 기 은 0
기출분석 고트
-
잠깐 카공하는데 1
옆엔 경희대? 3대3 과팅함 아 나도 낄래요
-
어떤 0
잘생긴 친구가 지나갈때마다 쳐다보는데 저 좋아하는건가요
-
엄
-
잇올 머야 0
전국 시대컨 수요조사 왔네 다같이 시험치면 좋겟다
-
고양이 1
-
현역때는 수특이랑 올림포스만 풀고 높3나왓는데 지금은 머리가 나빠진건지 왤케 문제가...
-
대머리만 외쳐도 독포주던 그젖지 어디갔어요
-
국어 유기 중 3
사실 사탐 공부가 곧 국어 공부 아닐까?
-
안그래도 유리 4세트 구워서 죽을뻔했는데 사슬구한다고 겁나 죽었는데 왜 아무도 이런...
-
붐비는 시간 대가 있을까요? 저 때에 비해서 글이 리젠되는 속도가 많이 죽은 것 같네요
-
정의란 무엇인가... 정의의 상대성...
-
아 진짜
-
트럼프의 무차별 관세폭탄으로 버크셔도 이틀새에 마15퍼 떨어졌을 정도로 개박살난...
-
너무 배고픔 2
걍 죽겟음 먹을것도 없는데
-
기숙 퇴원생이고 2월 25일에 들어가서 휴가날 나왔어요 질문받아요
-
내 향수 어떰 2
달고나의 달달한 향이랑 바닐라 무더기로 왕창 때려박은 향임 지속력 최소 5시간임...
-
질문 받습니다 6
마음껏 자유롭게 해주세요.
-
긴생머리 젖지 3
긴생머리젖지 반곱슬젖지 풍성한젖지 장발장젖지 대머리젖지 젖지대머리 머머리젖지...
-
실패~
-
부담스러움?
-
24학년도 제외
-
머리가 너무길다 4
머리기르는게 이렇게 힘듭니다
-
민트테를 달려면 차원이 다른 퍼포먼스를 보여줘야 역시 인방을 해야하나 음음
-
생명수 모의고사가 곧 출판돼요! 많은 관심 부탁드려요~! 오늘 풀어 볼 기출은...
-
수1: 58/100 수2: 27/100 확통: 85/100 천상 통통이 확정 ㄷㄷ...
-
만년필 동호회의 추천을 얻어서 파이로트 프레라를 사따 0
물론 엄마돈이다 2만4처넌 아이보리 화이트는 너무 오래 걸려.
-
엽떡 먹을거임 4
근데 혼자 먹기 너무많아 같이와서 먹어 주소는 안 알려줌
-
Ex) 1급이 3급보다 최전방에 배치될 확률이 높다
-
현역 고3이고 3모 4떳어요ㅜㅜ 하…………….담배마려운데진짜 제가 기초문법이나...
-
말이 많은데 못 해서 힘들대 그래서 질문 남은 시간 동안 말하다가 가라고 함 앞우로 ㅋㅋㅋ
-
덕분에 전생의 글을 마음껏 공유할 수 있게 됐습니다 숭배합니다 그저... GOAT...
-
개빡치네..
-
[단독] 이철규 의원 아들, 마약 정밀검사 결과 대마 '양성' 0
액상 대마를 구하려다 적발된 국민의힘 이철규 의원의 아들 30대 이 모 씨가 마약...
-
기분이좋아짐
-
컨디션 ㄹㅈㄷ 저녁 굶을까
-
금테가 부럽구나 3
그런데 달면 뭐하지?
-
난 빚쟁이
-
알겠지요?
-
죄송합니다... 오늘 코칭을 늦게까지 하게 되는 바람에 밤 늦게 집에 들어가야...
-
아 잠 좀 제대로 잘 걸
-
선택과목 여쭤보셔서 말했더니 왜 화학하냐는듯이 보시던데 아니 생1 잘못 말한 거...
-
저녁ㅇㅈ 8
-
ㅇㅇ
-
라인전에서 솔킬 3번따도 다른데가 터진다
-
힐링시간 3
국어 문학 연계 공부하는게 재밋다
-
3평 보고 개념이 흔들렸던 거 같아서 듣는 중인데 개념 설명이 되게 좋네요 개념만...
-
안냥하세여 생윤똥싸꾼 ㅋㅋㅋㅋㅋㅋㅋ
-
기만 0
멈춰

유익한 글은 선 7ㅐ추 후 감상이애용...
감사합니다마지막 공통접선 공식 올해 왠지 쓸일 있을 느낌

한동안 안 나와서 슬슬 나올때가 되긴 했죠본문 이차함수 부분에서 언급한 문제입니다!
https://orbi.kr/00061780743/%EC%88%982%20%EC%A0%81%EB%B6%84%20%EC%9E%90%EC%9E%91%EB%AC%B8%EC%A0%9C
기대 안하고 들어왔다가 생각보다 신박한게 많아서 개추 + 팔로 박고 스크랩 떠서 갑니다!
바로 스크랩

감사합니다 ㅎㅅㅎ
잘 읽었습니다삼차함수 2번공식이 진짜 자주쓰이는데 생각보다 사람들이 잘모름ㅎ
그러게요 되게 유용한데 은근 안 알려짐
좋아요를 누를 이유가 있는 글..!

감사합니다. 앞으로도 좋은 글 많이 쓸게요 ㅎㅎ좋은 글 감사합니다 :)
삼차함수 변곡점 지나는 공식하고 그외 언급하지 않으신것들은 최고차항이 필요없나요?
최고차항은 전부 곱해줘야 합니다! 어차피 다 곱해줘야 해서 외워야 할 부분만 적은거였는데, 언급을 제대로 할 걸 그랬네요 ㅜ