칼럼1) 알아두면 쓸데있는 다항함수 적분공식 총정리
게시글 주소: https://orbi.kr/00061780620
제 첫 번째 칼럼 주제는 다항함수 적분공식 총정리입니다.
적분공식들은 계산을 훨씬 가볍게 해주고, 빠르게 점검할 수 있어서 검토용으로 쓰기에도 좋습니다.
사실 다항함수 적분 공식은 엄청나게 많습니다. 하지만 그걸 다 알 필요는 전혀 없습니다. 실전에서 쓸만한 공식 몇 가지만 체크하고 넘어가면 됩니다.
이미 아는 게 나왔다면 '아 맞아 이런게 있지~' 생각하며 복습차 확인해주시고, 처음 보는게 나온다면 '이런게 있구나 알아둬야겠네' 생각하며 읽어가시면 됩니다.
1. y=xn 꼴
초록 넓이 : 노란 넓이 = n : 1
(각 직선들은 축에 평행하게 그려져야 하고, 최고차항 계수가 1이 아니어도 성립합니다.)
모든 n차 다항함수에 대해서 성립하지만, 사실상 수능에서는 이차함수의 경우에만 유용합니다. 삼차부터는 저도 써본 적이 없어요.
일차함수 넓이 구할 때 적분하지 않잖아요? 비슷한 느낌으로 이 공식을 알면 이차함수의 경우에는 많은 경우에 적분을 할 필요가 없어요. 모든 이차함수는 곡면아래 넓이를 저런 식으로 도출해 낼 수 있기 때문이죠.
이차함수의 경우 위 상황에서 초록부분과 노란 부분의 넓이비는 2:1이며, 이를 다음과 같이 인식할 수도 있습니다.
표시한 전체 직사각형의 넓이 x 1/3 = 곡면 아래넓이
예를 들어보겠습니다.
위 경우에서 1에서 2까지 이차함수의 적분값을 구하는 상황입니다. 첫 번째로 할 일은
표시한 부분의 직사각형을 보며, 직사각형의 넓이가 2이기 때문에 곡면 아래 넓이는 1/3 배인 2/3임을 구하는 겁니다.
그래서 색칠한 빨간 부분의 넓이는 2/3이고, 적분값은 노란 영역의 넓이인 1까지 더해줘야 하므로 답은 5/3입니다.
이와 같이 접근하면, 이차함수 적분 문제에서 적분 구간이 축을 포함하는 상황은 전부 빠르게 처리할 수 있습니다. 최고차항 계수가 1이 아닐 때도 당연히 성립합니다. 다만, 이차함수의 적분 구간이 축을 포함하지 않는다면, 대체로 그냥 적분하시는게 더 빠를 겁니다.
한편, 다음과 같은 오해를 하여 삼차함수에서 이를 쓰려고 하시는 분들도 가끔 있습니다.
"이 경우엔 3:1 ?"
은 절대 아닙니다. y=xn 꼴에서만 사용할 수 있는데, 위 상황은 그런 꼴이 아니기 때문입니다.
그런데 y=x3꼴의 적분을 묻는 경우는 거의 없잖아요? 그래서 앞서 말했듯이 삼차 이상부터는 거의 쓸 일이 없습니다.
2. 이차함수
너무 유명한 공식이죠. 인지해야 할 점이 딱 두 개 있습니다.
1) 둘러싸인 넓이는 오직 x좌표 차이에만 관련이 있다!
2) 색칠한 넓이가 반띵이 되는 곳은 이차함수의 축이 아니라 알파와 베타의 중점 부분입니다. 당연한 내용인데, 가끔씩 실수가 나오기도 하므로 유의하세요.
한편, 공식은 아니지만 알아두면 정말 많이 쓰는 이차함수 넓이 관계가 두 가지 있습니다.
1) 위 경우처럼 길이비가 각각 2:1일 때 초록 부분과 파란 부분의 넓이가 같습니다. 이는 해당 적분 구간의 적분값이 0임을 의미하기도 합니다. (초록과 파란 부분의 넓이는 같은데 부호가 반대니까요.)
이는 삼차함수의 2:1 관계와 관련이 있습니다. (이 말은 이해가 안 되시면 그냥 넘어가셔도 좋아요.)
2) 위와 같이 초록색 적분구간이 이차함수의 축에서 시작할 때, 길이비가 그림처럼 1:루트3으로 만들어진다면 초록 부분과 파란 부분의 넓이가 같습니다. 이는 삼차함수의 1:루트3 관계와 관련이 있습니다.
두 경우 모두 이차함수의 최고차항 계수와 관계 없이 성립합니다.
3. 삼차함수
두 가지가 있습니다. 첫 번째는 매우 유명한 상황이죠. 직선 대신 이차함수인 경우에도 똑같이 성립합니다. (삼차함수와 이차함수가 알파에서 한 번 만나고 베타에서 접하는 경우라면 말이죠.)
이와 연관지어 생각해볼 만한 관계가 있는데요,
위 그림처럼 X좌표 길이 비가 1:3이 될 때, 초록 부분 넓이와 파란 부분 넓이가 같습니다. 사차함수의 3:1 관계와 관련이 있습니다.
두 번째가 굉장히 유용한 공식인데 의외로 잘 알려지지 않았습니다. 변곡점을 지나는 직선과, 삼차함수로 둘러쌓인 한 쪽 넓이가 다음과 같습니다. 두 쪽은 거기에 2까지 곱해주면 되겠죠. 양쪽 부분이 넓이가 같을테니까요.
4. 사차함수
역시 두 가지입니다. 솔직히 말해 이 두 공식은 요즘 평가원에선 보실 일이 없을거고(과거에는 나온 적이 있긴 합니다.) 사설이나 내신에 유용할 듯 하네요. 넣을까 말까 고민을 했으나 아는 사람은 다 안다는 공식이라 넣었습니다.
경험상 '둘 중에 뭐가 1/30이었지??!' 하면서 맨날 헷갈리는데, 공통접선 놈이 1/30이라고 확실히 알아둡시다.
제가 준비한 공식은 여기까지입니다. 소개드린 공식 외의 것들은 좀 과한 느낌이 있습니다.
한편 공식이 전부 '몇 분의 (b-a)의 몇 승' 느낌으로 생겼는데요, '몇 분의'에 해당하는 부분은 암기구요 '몇 승'은 쉽게 기억하실 수 있습니다. n차함수에 대해 n+1이 지수 자리로 가기 때문이죠.
칼럼은 여기까지입니다. 감사합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
스타벅스도 편의점도 있네 이동네사람들은 다 경운기타고다니는줄알았는데
-
이영수쌤한테 꽂혀서 차타고 왕복 1시간 지하철 2시간을 하려고 하는 걸까.....
-
누가 나좀 기절시켜줬으면
-
강사 추천좀 해주세요
-
ㅈㅈ 어디감 6
?
-
10시까지만 일본어 공부 좀 하다가 오트밀이랑 닭가슴살 쳐먹어야징
-
밥먹고바로눕기 3
-
확통특 7
확통특: 쉽게 나오면 왜이렇게 쉽게나왔지하고 3번풀어서 시간 많이걸림 어렵게 나오면...
-
컷은 모르겠고... 그냥 지1이 1 뜨고 생2가 2 떴으면 좋겠네요 ㅠㅠ
-
인스타에서 프리랜서들이 장소 구분 / 시간 구분 없이 원할때 쉬고 원할때 일한다...
-
기출들은 다 빡셌는데 왜이렇게 쉬운것이냐 잘쓴거 같긴 한데 너무 쫄리는데
-
전문대 지방대 어디쯤 갈 수 있는지 알려줘
-
어케 놀지 5
뭘 해야 잘 놀 수 있을까
-
시대인재 현강 0
시대 현강 국수지구 기출도 다루나요?
-
심사숙고하는 성격이면 인생 사는 데 좋을 것 같지만 꼭 그렇지도 않더라구요...
-
육군에서 26수능을 볼 생각입니다. 지금 일병2호봉이고 병장 달때쯤 수능을...
-
이이잉 ㅜㅜ
-
병역 문제가 최악이구만 24
큰 목표를 세우고 싶은데 여기 발목이 잡혀서 끝없이 계획이 지연되는구나
-
아니었구나
-
상평시절 17이전말고 18부터 공부하는 게 맞죠?
-
난이도: 하~중 타임어택: 중 미적: 기본적인 개념에 충실 딱히 어려운건 없었음...
-
1컷 얼마임? 고인물들 고려해서
-
N수생이고, 올해 지방 의대는 가능한 성적을 맞았지만, 한 두개만 더 맞았으면 하는...
-
국어와 관련하여 질문을 받아보면 많은 학생들이 글을 ‘이해‘하는것이 무엇인지...
-
아침 6시에 깨는 이 갓생 뭐임?
-
평소에 공부할때 틀리면 100프로 실력이라고 생각하고 공부해야함 애초에 그런걸...
-
공기업vs약사 6
공기업 초봉 4000~5000만원 평균연봉 8000~1억원대 약사 서울권 약...
-
Yg는 진짜 아웃풋이 ㅋㅋㅋㅋㅋ 걸그룹은 블핑 보이그룹은 빅뱅 ㅋㅋㅋㅋㅋㅋ
-
그래도 ㄱㅊ은 편임? 일단 유리한 정황인거지?
-
에스컬레이터 있는 학교는 첨보네 ㄷㄷㄷ 310건물이 유독 좋은건가요..
-
오쿠리시마스
-
to 친애하는 오르비언님 - 이정도론 메디컬 힘든가요..? 8
아무래도 영어 3이 치명적으로 작용하겠죠..? 혹시나 대략적인 라인 알고계신다면...
-
문과 설대식 409.x 학부대학 가능하다고 보시나요 0
내신 bb ~ cc 기준 아 둘 중 뭐냐에 따라 여부가 달라지나
-
도착 3
휴 안 늦음
-
내년에 동사 한번 응시해 보려 하는데, 작년 n제도 사서 풀어봐야 할까요??
-
1타 관계없이 자신한테 잘 맞는 강사 들으면 되는거 알구있는데그래도 추천...
-
충주로 가요 10
건글의 면접을 보러 가요
-
미적 84인데 0
걍 2등급인거 받아들였음 나는
-
택시타고 가는데 빠듯하다
-
여그로 ㅈㅅ 국수영사문지구 93 84 81 47 36 1 2 2 1 3 서성한 경엉...
-
어제 하고 싶은 말 다하고 쳐자서 내 이미지가.. 내 착한 이미지 돌려내..
-
ㅈㄱㄴ
-
가천의 고사실 0
그냥 정해진거 없이 가라는대로 가면됨?
-
맞다면 우리 주변엔 공룡이 아닌 것이 없겠지.... 우린 공룡들 속에서 살고 있다
-
가천의 201호 4
ㅎㅎ
-
다 줘 패야겠어
-
얼부기 6
온앤온
-
그렇다고 30분 늦게 나왔으면 늦었겠지,,,
-
얼버기 4
깨면안되는데 깨버렸어요... 다시잠이안와...
-
왜깼지 2
마지막 공통접선 공식 올해 왠지 쓸일 있을 느낌
본문 이차함수 부분에서 언급한 문제입니다!
https://orbi.kr/00061780743/%EC%88%982%20%EC%A0%81%EB%B6%84%20%EC%9E%90%EC%9E%91%EB%AC%B8%EC%A0%9C
기대 안하고 들어왔다가 생각보다 신박한게 많아서 개추 + 팔로 박고 스크랩 떠서 갑니다!
바로 스크랩
삼차함수 2번공식이 진짜 자주쓰이는데 생각보다 사람들이 잘모름ㅎ
그러게요 되게 유용한데 은근 안 알려짐
좋아요를 누를 이유가 있는 글..!
좋은 글 감사합니다 :)
삼차함수 변곡점 지나는 공식하고 그외 언급하지 않으신것들은 최고차항이 필요없나요?
최고차항은 전부 곱해줘야 합니다! 어차피 다 곱해줘야 해서 외워야 할 부분만 적은거였는데, 언급을 제대로 할 걸 그랬네요 ㅜ