문항공모 광탈한 문제
게시글 주소: https://orbi.kr/00061195957
개인적으로 좋은 자작문제라 생각합니다
답과 풀이를 적어서 보내주시면 2000덕코 드릴게요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅋㅋㅋㅋㅋㅋ
-
올해 상지한은 별들의 전쟁일까.... 근들갑일까
-
커뮤니티를 보면 가끔 그래 다들 자기들만의 사정이 있는거 같아
-
생명과학1 노베 0
노베 고능아라는 전제 하에 매일 하루 3시간씩 생명하면 백분위 50가능?
-
논술 문제는 잘풀엇는데 ㅅㅂ 최저 떨함ㅋㅋㅋㅋ
-
물어봣다가 언니랑 엄빠한테 ㅈㄴ 혼낫다…………… 재수 맘 먹은 애...
-
난 까였는데 3
약속 다시 안잡아주네 따흑..
-
낼 미용실가는데..
-
으응
-
그날 봐도 아는척 하지 말아주세오
-
약술형논술어떰? 1
친구가 반수하고 싶은데 얘가 좀 국못수잘이라 인서울 하위권이나 지거국만 가도...
-
양민학살한번해봐?
-
피램으로 기출분석+ 주간지 + 수특 깔짝하면 5시간 예상되는데 ㅅㅂ 말이되나 나의...
-
멜론송이도 있네 6
오
-
나도 가야하나
-
일단 중간고사 성적이 아직 나오진 않았지만 재입학한다고 내신을 더 잘볼 수...
-
난담배가싫어 6
응
-
숨은 그림 찾기는 존나 골 때리긴 하네...
-
3수 생각을 하고있습니다 제가 대전에서 중고등학교를 졸업하고 재수할때도 대전에...
-
SKT 해킹에 中해커 주특기 백도어 악성코드…"주체 단정 어려워" 0
중국 기반 공격자 주로 쓰는 'BPF도어 기법' 확인…"오픈소스 악성코드"...
-
ㅈㄱㄴ
-
곧연휴있음? 5
언제????
-
5월 모고 준비해야돼서 딱히 놀 수 있을거 같지도 않네 고3인생 너무 좆같다
-
생윤 너무 재밌다 11
사문은 너무 현실적임
-
간첩이 대선 2위…정보전선 뚫린 '이 나라' 망했다 2
━ [제3전선, 정보전쟁] 베트남전쟁 정보전 오는 30일은 남베트남 패망 50주년이...
-
연대인문논술 준비하고 싶은데 가능성 없는 거면 안 하려고요… 정시가 애매해서..
-
내신 문제 오류 진짜 많음..
-
가족끼리 서울로 간다고 해서 시험 끝나는 당일하고 5월 6일 대체공휴일만 놀 수...
-
찍맞이나 시험장에서 말리는거 없고 머리는 평균 이상이라고 가정 완전 운의 영역임?
-
자살하고 싶은데 위로의 말 좀 해주라. ㅇㅇ
-
ㅈㄱㄴ
-
원래 전국에 단 4명이었는데
-
잡담 태그만 달아야 하는데 실수로 반대로 함... 놀라서 호다닥 지워버림 아무도 못 봤겠지
-
애매한 대학보단 효율 최강인 것 같은데...
-
올해부터 자퇴후 재입학이나 1년꿇기 엄청 늘어날듯 10
안하고는 방안이 거의없음
-
내신 1학년 1학기부터 망치면 방법은 자퇴 후 재입학밖엔 없는거? 09 이후 애들 기준 ㅇㅇ..
-
난이도가 천자만별이네
-
도저히못하겠다 4
허리가아파 좀 걷다와야지
-
그래서 독서하기 월요일 시험이지만 일단 이건 다 읽고 시험칠거야
-
공대 가산점 3프로면 사탐 만점이 더 높지 않아요?
-
사진은 대략기능들 사진구현(근데웬만하면 텍스트나 말로설명하기쉬우면 그렇게할예정) 특이점은온다
-
가루비 포테토칩 와일드콘소메맛 + 시오 야키소바
-
답률 살ㅈ짝 궁금한디..혹시 표 갖고계시면 올려주시면 그랜절올리겟스빈다...
-
적정가 120달러
-
독서실에 박아두고 먹어야지 ㅋㅋ
-
으으 7
먹기싫어 이게 뭐야
-
싶은줄 알았는데 아니엇음.. 다음주에 술마시러 놀러감 아니 8명이서 만나는데 내가...
-
어쩌라고
-
전반적으로 과자들이 덜 짜고 덜 달아서 별로임 일본에서 파는 가루비칩인가...
풀이: 믿찍5
감사합니다.
잘 안나오네요 주어진 조건으로 어떻게 f(0)의 위치가 결정되는지 잘 모르겠습니다

빨리ㅣ답주셔요 안풀리면 답답함…답:4
풀이:
이래서 4번임
ㄱ틀려서 2같은데
1. g(0)=0이고 g'(x)=ㅣf'(x)ㅣ-f'(x)이므로 함수 f(x)의 ㅣ극댓값-극솟값ㅣ=p라 하고 f'(x)=3k(x-a)(x-b) (ab에서 상수함수이고 a=0) 꼴이면 아래서 언급할 함수 f(x)와 g(x)의 교점이 2개가 될 수 없음)
2. 함수 f(x)와 g(x)의 교점이 2개려면 f(x)가 극대인 점에 g(x)가 닿거나 극소인 점에 g(x)가 닿는 두 가지 상황이 나옴, f(0)=g(0)=0이므로 f(0)의 위치는 총 4가지 경우가 나오는 셈.
ㄱ. g'(0)=0은 f'(0)=0을 의미하는데 꼭 f'(0)=0이 아니어도 성립하는 경우가 존재하므로 ㄱ은 거짓
따라서 답은 2번
2. 에서 가능한 경우를 모두 따져보면
x=0에서 f(x)가 극댓값을 가진다
x=0에서 f(x)가 극솟값을 가진다
이라고 풀었습니다
왜냐하면 if 접하지 않는다고 가정하면 x=0 근방에서 2개의 교점을 가지고 필연적으로 1개의 교점을 더 가지게 되므로
따라서 f(x)는 x=0에서 무조건 접해야 합니다!
이런 경우는 왜 안되나요? g(x)가 작성된 식을 통해서는 g(x)의 개형을 결정하고 g(0)=0이라는 것만 알 수 있는데 함수 f(x)와 g(x)가 접할 때가 존재해야함은 확실하지만 그 접할 때의 x좌표가 0이라는 것까지 어떻게 확정할 수 있는지 잘 이해가 안됩니다.
아 그런 case가 가능할 수 있다는 것을 생각하지 못했습니다
죄송합니다.
저도 처음에는 무조건 극대 아님 극소에 x=0이 걸린다 생각하고 접근하다가 그렇지 않아도 가능한 상황이 떠올라서 ㅋㅋㅋㅋ 말씀드렸습니다, 문제 재밌게 풀었습니다!
4번 아님??
정답 4번 맞습니다 ㅏㅏㅏ
풀이 보내주신 허수께 2000덕 드릴게요