칼럼) 미분 가능성 (수정사항 있습니다)
게시글 주소: https://orbi.kr/00058203708
미분 가능성 for Orbi.pdf
어제 갑자기 미분 가능성 나올 것 같아서 칼럼 올립니다!
수2 하시는 분들도 봐두면 좋은 내용 있으니 보시고, 미적 선택자들은 얻어갈 거 많을 듯 하네요.
다운로드 하시면서 좋아요 눌러주세요 :)
오랜만에 이렇게 칼럼으로 인사드리네요 9평 관련 글 아마 작성되는대로 올라갈 듯 합니다!
*수정 사항은 해당 페이지 이미지 아래에 썼습니다. 이미지들 확인 바랍니다
2번에서 두 번째줄부터 수정해주세요
(이번에는 g(x)의 극한은 존재하므로 (미분계수의 정의에 해당하는 x+h 즉, 증분의 극한값) f’의 값은 상관없다. 따라서 fg가 연속이 되도록 f=0만 되도 되어서 인수 개수 0개 초과면 된다.
3번의 경우 g->g’, f’->f로 수정해주세요. 결론인 0개 초과는 맞습니다.
ㄱ의 네 번째줄 좌극한식의 결과를 f(x)의 좌미분계수네서 우미븐계수로 수정해주세요
0 XDK (+21,020)
-
10,000
-
10
-
10
-
1,000
-
10,000
-
옯창의 무게를 견뎌라
-
오르비 랭킹 3위 먹고 그랬는데 개학하니까 잘 안되네요
-
병원 가야하나요? 커피 아침에 한잔 마신게 다인데 왜이러지 엄청 피곤한대 누워서...
-
그 중에 님은 없을 수도
-
생명 수특 0
필수인가여 시간 별로없는데
-
명조 픽뚫 남 0
끼아아아아아아아아ㅏ아아아아아ㅏ악
-
예에에전에는 교과서에 순우리말 문법 용어 넣으려고 했음 1
근데 무산
-
10시쯤에 가자
-
님들 뭐배워보고 싶으심 22
취업 돈 이런거 빼고 그냥 순수하게 자기가 배워보고 싶은 학과 참고로 전 전기공학부입니다.
-
저는 리제로
-
진짜 빨리 안 달면 죽을 수도 있음 진지함
-
이륙하면 만덕 뿌릴거임
-
화작 컷이 곱창나서 울며 겨자먹기로 언매하는 거지 기하처럼 화작이 꿀과목이었으면 걍...
-
스릴없어
-
센츄리온 6
빨간색이 더 예쁜거같은데 저걸로 바꿀수없음?
-
곱씹어볼만 한가요???
-
절대 달리면 안됨 무슨 일이 있어도
-
내일 하겟읍니다 공부하러감 ㅂㅂ
-
국어성적올릴라고 0
ㄹㅇ 별에별 개잡기술들로 어캐든 커버하려고 발버둥 쳣엇는데 갑자기 기억남 지금 다까먹어버림
-
문학은 2
독서처럼 '어, 너무 개소린데' 하고 바로 고르는게 아니라 선지 보면서 '그럴수도...
-
우리학교 동기들도 하는 놈 분명 있을건데 난 이거 계정 들키면 반수 선언 할거임 내...
-
담주 월요일 오전 10시에 대형학원에서 외부생 접수 받는다고해서 오픈런하려고...
-
작수 47점인데 지금 거의 다 까먹었어요.
-
ㅈㄱㄴ 꼼꼼하게 제대로 할건데 독학으로 솔텍의 모든 내용을 100퍼센트 다 가져갈...
-
최적 개념교재로 따라가도 ㄱㅊ을까요? 올해는 김용택쌤꺼 들어보고 싶은데 교재비가 아까움 에반가여
-
독서에서는 이제는 그나마 여기가 함정이네 이게 다 같은 범주네 이게 보이는데...
-
파란색 팬들로 채울 때 먼가 보기에 예쁘긴 하네 LIONS ㅇㅇ
-
본문은 어차피 선지에서 다 해석해주니까 무조건 틀린 선지 빠르게 거르면서 시간...
-
재수생 확통런 0
3모 80점인데 미적 28 29 30 3개틀렸고 27번도 거의 찍어서 맞췄는데...
-
국어난이도순 4
언어>현대시>고전시가=과학기술>인문예술>고전소설=현대소설>사회문화>독서론>매체 순인듯
-
오늘 저녁 맞히면 만덕 16
힌트:파스타인데 앞에 4글자가 붙음
-
학교가기 싫은디..
-
도쿄대 트라이나 해볼까 수학으로 점수 쌀먹하면 될거도 같아보이는데
-
제 기준 국어 난이도 11
언매>>>문학>>비문학 언매가 제일 어려웠어요
-
한국지리 0
전성오 선생님 무지개 다 듣고 기출문제 풀고있는데 인문지리가 잘 안풀려서 인문지리만...
-
눈을 뜨자 ㅋㅋ 보이면 바로 산다
-
세지 vs 한지 10
세지는 지엽이 많다고 해서 고민이고 한지는 문제가 어렵다고 해서 고민입니다. 뭐가...
-
이거 생각해보니깐 걍 Det이었구나 이생각을 왜 못했지 빠가인가
-
개정시발점 수강하였는데 실전개념 뭐할 지 고민입니다 실전개념과 기출분석 강의는 한...
-
물1 브릿지 7
전국브릿지까지는 괜찮은데 올해 브릿지 난이도 빡세네;;; 내 폼이 떨어진건가...?
-
설마 해서 물어봅니다.
-
탈르비. : 오르비를 탈퇴하는것. 탈르비, 그것은 현생으로 나아가기 위한 발판이라고...
-
대학 편미분 방정식 내용을 가르치고 있는데 장난함? 라플라스 변환도 하지 그러냐?
-
하.. 라떼까지만 해도 이렇게 ㅈ될줄 몰랐지 표본이
-
박종민t 커리타고 있는데 문풀량 늘리고 싶어서요! (+ qed 너무 어려움) 너무...
-
입시 정보 얻고 싶어서 새로 가입하게되었습니다 !! 반갑습니다
-
이거들어바 10
굿
-
돈 조금더 주더라도 이신혁 듣는게 나은가요? 지금부터 아폴로해도 안늦은건가요? 도와주세요 ㅠㅠ
-
누가 수학 잘하려면 어캐 해야하나요 이런 질문이 올라와서 병훈t께서 겸손이 첫째...

감사합니다!!이거만 보고 수학 150점 받았습니다

표점 대박 기원
저도 고려대 의대가면 ur독존 수학팀에 껴 주시나요?
1인 체재입니다 ~
평가원과의 접신 ㄷㄷ
나와라 얍얍...가장 좋아하는 파트
9평 문제 궁금하네요 ㅎㅎ,,,
차수논리를 쉽게 풀어내셨네용 좋은글 보고갑니다
오랜만이시네요! 쉽게 쓰려 노력했는데 알아봐주셔서 감사합니다 ㅎㅎ
잘먹을게요! 선우형 기좀 주세요

보냇습니다 도착했나요? 응원해요 :)사랑한다고
오늘공부는이것만한다 아ㅋㅋ
좋은글 감사해요!!!
칼럼추
잘 읽었습니다!
다만 f'(x)g(x) + f(x)g'(x)로 해석하는 부분에서 g(x)가 극한값은 존재하지만 함숫값과는 다른 케이스 부분에서 질문이 있는데요 ㅠ
위 식처럼 정의대로 생각하면 f'(x)g(x)부분에서 g(x)가 극한값이라 f(x)만 0이면 되는게 아닌건가요..? 이때껏 그렇게 알고 있었는데 왜 아닌지 잘 모르겠어요,,
특수 케이스면 위에서 말씀하신 걸로 되는 함수도 있는데 일단 일반적인 걸 다루느라 저리 썼습니다 ㅜㅜ 하지만 앞선 댓글의 것도 가능한 경우도 있어서 결국 문제마다 따져봐야죠…!
아 그렇군요! 일단 1개 초과인걸로 알고 있어야겠네요 ㅎㅎ 좋은 칼럼 감사드립니다!!
제가 다시 검토 한 번 해보겠습니다
고쳤습니다. 제가 3번 설명을 2번에 썼습니다 해주신 말씀이 맞습니다.
2페이지 3번 설명에 오류있는거같아요..! fx f'x gx g'x 반대로써져있는거같아요..
기재했습니다. 제가 오타를 반대로 냈네요 알려주셔서 감사합니다,,
아니에요!! 5페이지 ㄱ 마지막에도 우미분계수 좌미분계수라고 오타있는거같아요 !
맞네요 …. 감사합니다
올려주시는 자료 항상 너무 잘보고있습니다 감사해요 :)
죄송한데 올리신 파일에 수정사항이 반영된건가요?
이미지 밑에 써두었다고 기재했습니다 제가 밖이라 지금 파일 수정을 못하네요,,
좋은자료 너무너무감사합니다