수학 기벡질문 구와 두 평면의 위치관계
게시글 주소: https://orbi.kr/0005603159

수학문제 해설을보면 항상 위치관계를 1번처럼 예각으로 두고하는데요
2번처럼 둔각일수도있는거아닌가요
참고로 구는 x^2+y^2+z^2=50
두 평면은 x+y+2z=15 x-y-4루트3z=25
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
의대열풍으로 같이 휩쓸려서 입결이 올랐다고봄 아니면 진짜 수의사가 저만큼 메리트가있어서라고봄
-
원합니다. 2
내가살기위해서
-
새르비 맞팔구 3
극도록 퇴화한 레버기는 얼버기와 구분할 수 없다
-
내 눈 ㅠㅡㅠ
-
3모 13315 5모 14311 탐구 공부가 어느정도 끝나서 수학을 하고있는데...
-
수능 다시 준비하면서 독학으로 하다보니 뭔가 스트레스 받고 집중 안되고 머리...
-
우선 등급은 작수기준 국어(화작) 4 수학(미적) 3(공통2틀,미적4틀) 영어...
-
딱히 자취한다는 생각이 안듦... 그냥 기숙사 사는거같음
-
정시인데 등급어그로꾼 댓글에 요즘 입시 모르는 나형충 등장 물론 작년 설경제는 빵이긴 했음
-
초딩 6년전체 따 당하고 나서 악몽도 자주꾸고 늘 불안해하고 친구 0명 자주울고...
-
오르비 안녕히주무세요 12
-
이래도 되는걸까.. 내 모든 걸 알고있음
-
새벽 드라이브 겸 스윽 가볼까
-
극단적인 곳은 성비 9:1인 이유가 있음 한의사 일 자체가 ㅈㄴ 힘든 (말그대로...
-
옵붕아 자? 27
.
-
D-41ㅇㅈ 4
내일 더 빡시게
-
속상해요... 0
속상하고 분하고 화나요..
-
일단 나부터.
-
요즘엔 오르비가 0
일기장이 되어버림
-
그럼에도 행복하게 살아야지
-
ㅋㅋ
-
최저러 공부법 1
3과목 국영탐(1개) 준비하면 되는데 하루에 한과목씩 돌아가면서 뿌실까요 아니면...
-
더데유데 1
더데유데 어떰?? 3모대비 풀었을 때 너무 실망해가지고;;; 더데유데 좋다는 소리가...
-
벌써몇달짼가~ 1
-
지금 역대급임
-
공부하는 와중에도 무의식적으로 다른 생각함 어젝밤에 본 웹툰 생각이남 집중이 잘...
-
자러갈지도 1
자러갈지도
-
오래된생각이야
-
팀 첫 메이저 대회 우승을 이끌어버리네 ㅋㅋㅋ
-
ㅇㄱㅈㅉㅇㅇ? 8
아이고…..
-
에제 핸더슨 지럈다잉 캬~~이거지
-
교도소였음
-
국정원 심찬우 커리로 쭉타서 5>3후 정도로 오른것 같긴한데 여기서 뭔가 정체되는...
-
난 어제 친구따라 갔다가 너무 싼마이 감성이라 충격받음 이상한 천박한 구호 외치더니...
-
인 연속함수 f(x) 가 존재하는가? 이 함수의 성질은 어떠한가?
-
뭐지
-
인강은 쓸모없다. 13
군대 가기 전 알바도 열심히 하고 주변에 공부 잘하는 친구들 얘기도 들으면서...
-
굳이 독재학원 다닐 필요 잇을가여? 근처 독서실 다닐까 생각중인데
-
잘자 아가들아 6
형 자러 갈게
-
답 470
-
ㅇㅋ ㅇㅋ, 그럼 오르비식으로 가볼게. 아 진짜 이거 말하면 좀 그렇긴 한데,...
-
저 조금 궁금해짐 오르비에 쓴 글들 gpt에 한번 돌려보면 뭐가 나올지도
-
자연수 하나를 저장하고 있는 기계가 있다고 하자. 이 기계에 저장되어 있는 숫자가...
-
이제 진짜 잔다 6
8시에 강기원 자받튀하러 가야됨
-
애니메이션 뭐에요..? ㄹㅈㄷ네
-
국수영 원점수 기준 전교 3등 국수영탐 원점수 기준 전교 2등 (추측)...
-
원래 수분감, 카나토미 이정도 하고 엔제 풀려고 했는데 교육청기출까지 하고...
참고로 구와 평면입니다
둔각하면 결과가다르던가요? 같던걸로 기억하는데
둔각일때 예각과 풀이과정이 완전히달라지던데요.. 2010년 9월 23번입니다
둔각=pi-예각 이라서..
두평면의교선까지의거리따져보면되지않을까요
평면의 방정식이 너무복잡해서 ...
저럴수도있는데 원래 정상적인 경우는 다 따지고 풀어야되는데 학생들이 다 저렇게 가정하고푸니까 저런문제는 평가원에서 그냥 예각으로맞춰준다고 전에 평가원에서 출제하셨던쌤이 그랬어요 ㅇㅇ..
그럼 그냥 골치쓰지말고 예각으로 두고 풀면 다 맞는건가요?
네!
그래도 연습하실때는 둘다 해보는게 좋아요
문제가 각각의 평면과 구의 교선으로 이루어진 원 C1, C2 위의 임의의 점 p q의 최소거리를 구하는거라 둘다해볼수가없어요 ...
그리고 평면과 구의 방정식이 주어져있으면 둔각or예각 무조건 둘중하나이고 둘다될수는 없지않나요
?? 그건 논리적 오류아닌가요 어떤쌤이그러시는지...
그건 말씀드릴순없는데 하여간 인지도 있는 분이에요 ..
현우진이에요?
ㄴㄴ..
원래 다해야하는거 같은데, 저 문제는 예각이네요.
어떻게 예각인지 알수있나요?
f(×,y,z)=x+y+2z-15, g(x,y,z)=~%@!&^@^이라고하면 f(0,0,0) g(0,0,0)이 다 음수 잖아요. 그거랑 법선벡터 (1,1,2) (1,-1,4sqrt3)인거 잘 생각하면 예각이라는거 나올꺼에요. 힌트를 드리면 (1,1,2),(1,-1,4sqrt3)은 둘다 구의 원점에서 평면에 내린 수선의 발을 바라보는 방향이라는거에요.
만약 구의 중심이 x, y, z라 했을때 ax+by+cz+d의 값이 음수이면 법선벡터(a, b, c)가 구의중심에서 수선의 발을 바라보는 방향인건가요?
f(x_0,y_0,z_0) < f(x_0+1, y_0+1,z_0+2) 이고, 수선의 발을 P라 했을때 f(P)=0이니까 결국 f(O) < f(P)이잖아요.그러니까 vector(OP)의 방향과 (1,1,2)의 방향이 같은 방향이죠