[박수칠] 적분 기호 ∫의 이해
게시글 주소: https://orbi.kr/0004517989
미통기 ‘다항함수의 적분법’과 적통 ‘적분법’으로 들어가면 ∫(integral)을 배웁니다.
이미 알고들 있다시피 부정적분과 정적분의 표현에 사용되는 기호이고,
합을 의미하는 Sum의 머릿글자 S를 변형한 것이죠.
∫>
부정적분의 ∫은 도함수의 기호 d/dx와 정반대의 의미를 갖습니다.
dx와 짝을 이뤄서 ∫ dx의 형태로 사용되구요.
함수 F(x)의 도함수가 f(x)이면
라고 쓰며, 이때 f(x)의 임의의 부정적분이 F(x)+C이므로
와 같이 씁니다.
보다시피 부정적분에서 ∫은 합이라는 본래의 뜻과 무관하게 쓰였습니다.
합이라는 의미를 갖는 것은 정적분에서죠.
∫>
정적분의 정의는 함수의 그래프와 x축 사이의 넓이를 구하는 것에서 출발합니다.
함수 y=f(x)가 닫힌 구간 [a, b]에서 연속이고, 이 구간에서 f(x)≥0일 때
함수의 그래프와 x축, x=a, x=b로 둘러싸인 도형의 넓이 S는 다음과 같이
구할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분한 다음, 양 끝점과 각 분점의 x좌표를 왼쪽에서부터
차례로 x0(=a), x1, x2, …, xn(=b)이라고 합니다. 다음으로 각 분점을 지나면서 x축에
수직인 직선들로 도형을 자르고 이웃한 두 수선 가운데 오른쪽 수선을 높이로 하는 직사각형을
만듭니다.
(2) 이때 왼쪽에서 k번째 직사각형의 넓이와 모든 직사각형의 넓이 합은 다음과 같이
표현됩니다.
(3) 여기서 n→∞이면 구간 [a, b]에 존재하는 분점이 무수히 많아지기 때문에
각 분점의 x좌표들은 연속적으로 변하는 실수가 된다고 할 수 있습니다.
따라서 각 분점의 x좌표의 일반항 xk는 이 구간에 속하는 임의의 실수 x로 바꿀 수 있죠.
또한 직사각형의 가로 길이 는 0에 한없이 가까워지기 때문에 도함수의 기호와 같이
dx로 바뀝니다. 이때, 각 직사각형의 넓이는 다음과 같이 표현됩니다.
(4) (2)에서는 직사각형의 넓이가 k에 대한 식으로 표현되기 때문에 직사각형들의
넓이 합을 Σ로 표현할 수 있지만, (3)에서는 k가 없어졌기 때문에 Σ로 이들을
더하는 것은 불가능합니다.
따라서 직사각형의 넓이를 더하기 위해 새로운 기호가 필요한데 그것이 바로 ∫입니다.
x좌표가 x인 곳에 생긴 직사각형의 넓이 f(x)dx를 x=a일 때부터 x=b일 때까지 더하는
것은 다음과 같이 표현할 수 있습니다.
이처럼 Σ는 불연속적으로 변하는 직사각형의 넓이 의 합,
∫은 연속적으로 변하는 직사각형의 넓이 f(x)dx의 합을 표현합니다.
(부정적분에 ∫이 쓰인 이유는 정적분의 기본 정리에 따라 정적분의 계산에
부정적분이 필요하기 때문입니다.)
이렇게 이해하면 좌표축과 도형 사이의 넓이, 또는 도형의 부피를
정적분으로 간단하게 표현할 수 있죠.
<두 곡선 사이의 넓이>
두 함수 y=f(x), y=g(x)가 닫힌 구간 [a, b]에서 연속이고, f(x)≥g(x)일 때
두 함수의 그래프와 x축, x=a, x=b로 둘러싸인 도형의 넓이 S는 다음과 같이
구할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분하고,
각각의 분점에서 x축에 수직인 방향으로 수선을 그어서 도형을 자릅니다.
그리고 왼쪽에서 k번째 구간 [xk-1, xk]에 직사각형을 그리구요.
이 직사각형의 가로 길이는 , 세로 길이는 f(xk)-g(xk)입니다.
(2) n→∞이면 (1)에서 만든 직사각형의 가로 길이 는 한없이 0에 가까워지면서
dx가 됩니다. 또한 구간의 오른쪽 끝 xk를 x로 바꾸면 직사각형의 높이는
f(x)-g(x)가 됩니다.
(3) 따라서 도형의 넓이 S는 다음과 같이 계산됩니다.
<단면적을 아는 입체도형의 부피>
아래 그림과 같이 점 (x, 0, 0)에서 x축에 수직인 평면으로 잘랐을 때,
단면적이 S(x)인 입체도형이 있다면, 그 부피 V는 다음과 같이 계산할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분하고,
각각의 분점에서 x축에 수직인 평면으로 도형을 자릅니다.
그리고 왼쪽에서 k번째 구간 [xk-1, xk]에서 평면 x=xk로 잘린 단면을 밑면으로 하는
기둥을 그리구요. 이 기둥의 높이는 , 단면적은 S(xk)입니다.
(2) n→∞이면 (1)에서 만든 기둥의 높이 는 한없이 0에 가까워지면서
dx가 됩니다. 또한 구간의 오른쪽 끝 xk를 x로 바꾸면 단면적은 S(x)가 됩니다.
(3) 따라서 도형의 부피 V는 다음과 같이 계산됩니다.
그럼 예제 하나 풀어보죠.
2014학년도 수능 B형 13번 문제입니다.
(1) 먼저 부피를 구하려는 회전체를 그림으로 표현하면 다음과 같습니다.
직선 l과 쌍곡선 C의 방정식을 연립해서 풀면 교점의 좌표는 (0, 0), (3, 2)가 되구요.
(2) 회전체의 바깥면은 직선 l이 회전해서 만듭니다.
이 회전체의 부피는 다음과 같이 구할 수 있죠.
(3) 회전체의 안쪽면은 쌍곡선 C가 회전해서 만들고,
부피는 다음과 같습니다.
(4) 따라서 구하는 회전체의 부피는 (2)-(3)으로 구할 수 있죠.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
... 늦게 도착하는 모든 경우의 수를 고려해서 버스를 타다보니까 시간이...
-
국어 4등급 재수생 올오카 독서 끝나가는중(문학은 다른거 했고 이미 끝남) 기출분석...
-
시대인재 복영 0
시대인재 라이브 안하시는분들 복영같은거 따로 사는법 없나요? 윤지환선생님꺼 사고싶은데
-
와 스울만 지역인재가 없냐
-
2달동안 n제만 주구장창 풀어서그런가 많이 쉽네 군대라서 3권도 못풀긴했는데...
-
수시할걸 0
목달장 저거는 그냥 부럽네 걍 ㅈ반고 갈 것을... 괜히 깝쳐가지고 내 지역인재...
-
서울대 공대나와도 대다수가 임원못달고 명퇴하는데 쟤들은 그냥 100살까지...
-
생기부 안한 내용 뻥튀기해주고 그걸로 3점대들 의대 지둔으로 감 정시러는 학교...
-
사진좀 돌려보자
-
의대,약대,서울대 선배들이 직접 본인의 경험담을 공유해주는 무료 세미나가 있어...
-
ㅇㅂㄱ 2
ㅎㅇ
-
디아카이브 국어 0
이거 등급컷 널널한 편이죠?
-
하.. 걍 존나 부자가되어야겠노 사실 평생 놀고먹을 돈있으면 우리나라 망하든말든...
-
왜 자석끼린 밀어내기도 하는데 철판은 당기기만하죠? 4
왜져ㅛ??
-
김범준 필노 4
진짜 당황스러울 정도의 초고퀄 제본이라 난 모든 화가 풀렸다. 권당 2만원 받아도...
-
보통 올해 수특에서 내나요? 아니면 작년도 수특에서 내나요?
-
전광훈 전한길 0
얘네둘은 근데 돈도 많으면서 왤케 후원구걸을 하지 재산을 얼마나 불리고싶은거여;
-
안녕하세요. 이번에 정석민을 듣기로 했습니다... 정석민 들으시는 분들은 강의...
-
[투표] 수리 가형 21,30 VS 현 기조 고난도 N제 0
둘이 비교하면 어느게 더 밀도있고 어렵다 생각하심?
-
치킨치즈머핀 vs 치즈제육
-
백악관, 尹 파면에 "한국 민주적 제도·헌재 결정 존중"(종합2보) 4
[워싱턴=뉴시스] 이윤희 특파원 = 도널드 트럼프 미국 행정부가 4일(현지 시간)...
-
제가 영어가 진짜 쌩노베인데 영단어장을 뜯어먹는 중학단어1800? 이거 외우고...
-
어쩌라고 ㅗ
-
저는 막연히 한계를 경험해보고 싶다는 마음으로 공부를 하고 있는데요, 문득 구체적인...
-
얼버기 2
부지런행
-
어제 에지간히 피곤했는갑네
-
ㅎㅎ 잠 깼다 2
기분 좋아졌어 아 나 진짜 대가리 꽃밭인듯
-
인권 보장 부탁.
-
계속 개소리 짓거리며 내말이 맞다고 우기는데 자고일어나면 그게 왜틀렸는지 알게됨..
-
작년 재작년에 더프쳤는데 거의 겹치려나요 풀지말지 고민인데
-
수학 N제 추천 2
죽기전에 이건 풀어봐라 하는거 있나요? 지인선 다하면 드릴할지 이해원할지 고민인데
-
으으 드러워서 내가 빡일한다 당분간 일하다가 많이 속상해할예정
-
발상노트 쓰는 데 시간이 너무 오래 걸려요 문제 이해하지 말고 그냥 풀이랑 예시만...
-
새르비 뭐임 6
-
하..
-
재종다녀보신분들 1
재종다녀보신분들 시대랑 강대 중에 어디가 좋을까요 추천부탁드립니당
-
여기에 수업까지 끼면 힘들어서 우울증 올 것 같은데
-
(꾸준글 1일차)
-
검고보러간다 4
드가자잇
-
지각이다.. 1
(진짜 지각임)
-
트럼프 시발아
-
그러하다
-
살기싫어요 5
아 과외 아치에 잡지말걸
-
세상에 없는거 같아요 으아아ㅏㅏㅏㄱ 그래도 올해 성불해야되니까 갔다올게요
-
얼버기 3
피곤해
-
왜 비오냐 2
우산없는데
-
계속 숏치라는 하늘의 계시인듯 양봉마다 숏 때릴예정
-
내신 수업이지 ㅋㅋㅋㅋ
부정적분에 적분구간이 있을 수는 없어요 수정해주세요
본문에서 어느 곳을 얘기하시는 건가요?
거의 맨 윗부분 말씀하시는거 아니에요? 이미지로는 두번째쯤?..
이런 실수가 있는지 몰랐네요...
수정했구요, 두 분 모두 감사합니다.
ㅎㅎ 좋은글 감사드려요. 비록 전 문과지만ㅜㅜ 끝까지 이해해보려고 노력해봤네요. 감사합니다!^^
앞까지는 문이과 공통입니다. 어려운 부분 있으면 질문 주세요~ ^^
고맙습니다