[수학의 기준] 기출을 통해 무엇을 배워야 할까
게시글 주소: https://orbi.kr/0004406482
기출문제를 제대로 활용하는 방법..
교과 과정의 기본 개념에 따라
어느 시험이든 기출문제를 분석하는 것은 가장 효과적인 공부 방법 중의 하나입니다.
그 시험의 성격을 가장 잘 파악할 수 있는 수단이 바로 기출 문제이기 때문이지요. 물론 수능시험도 예외는 아닙니다.
그렇다면 대학수학능력시험의 수학영역은 대체 어떤 능력을 측정하려는 시험일까요?
평가원의 출제 매뉴얼에 따르면 수학(수리)영역의 시험의 성격은‘고등학교까지의 수학 학습에서 배운 기본 개념·원리·법칙을 이해하고 이를 적용하여 문제를 해결하는 능력을 평가하는 것’입니다.
너무도 당연한 얘기로 들리겠지만, 실제로 수능시험장에서 이러한 시험의 성격을 당연하게 받아들이고 실천에 옮기는 학생은 그리 많지 않습니다.
정말로 교과 과정에서 배운 기본 개념·원리·법칙을 이해하고 적용할 줄만 알면 모든 문제가 풀린다는 데 대한 확신이 없기 때문입니다.
우리가 기출문제를 통해 반드시 확인해야 하는 것이 바로 여기에 대한 확신입니다.
-‘내가 배우고 이해한 내용만으로 정말 문제들이 다 풀리는구나!’
이러한 확신이 없이 문제를 풀다 보면 막히는 부분이 나올 때마다 내가 아직 배우지 못한 뭔가 새로운 내용을 적용해야 되는 것이 아닌지 자꾸 의심이 들게 됩니다.
그리고 그것을 찾아내려고 새로운 고민을 하게 되면 문제가 요구하는 방향과는 더더욱 멀어지기가 쉽지요.
따라서 기출문제를 공부할 때는 우선적으로 풀이의 근거가 모두 교과 과정의 기본 개념과 원리에 담겨 있는 지를 꼭 확인해 볼 필요가 있습니다.
물론 자신이 이해하고 있는 기본 개념의 범위가 교과 과정보다 더 넓다면 거기에 기준을 맞추면 되지만, 가능하면 문제 해결에 필요한 내용을 최소화시키는 것이 대다수의 학생들에게는 훨씬 유리합니다.
확신이 들지 않는 경우에는
그런데 풀이의 근거를 하나하나 점검하다 보면 이것이 과연 교과 과정의 개념만으로 해결이 가능한 것인지 의문이 생기는 경우가 종종 발생하게 됩니다.
그 대표적인 예로 2011학년도 9월 평가원 문항(그 이름도 유명한 스티커 문제)을 들 수 있습니다.
(가능하면 설명을 보기 전에 문제를 잠시라도 풀어보시기 바랍니다)
2011학년도 9월 평가원
주머니 안에 스티커가 1개, 2개, 3개 붙어 있는 카드가 각각 1장씩 들어 있다. 주머니에서 임의로 카드 1장을 꺼내어 스티커 1개를 더 붙인 후 다시 주머니에 넣는 시행을 반복한다. 주머니 안의 각 카드에 붙어 있는 스티커의 개수를 3으로 나눈 나머지가 모두 같아지는 사건을 A라 하자.
시행을 6번 하였을 때, 1회부터 5회까지는 사건 A가 일어나지 않고, 6회에서 사건 A가 일어날 확률을 구하시오.
문제를 읽어 보니, 자칫하면 1회부터 6회까지의 모든 경우의 수(총 729가지)를 다 헤아려 봐야할 것 같군요. 하지만 문제당 평균 3분 정도의 풀이 시간을 요구하는 시험, 그것도 수학시험에서 그런 것을 요구할 리는 없습니다.
일단은 사건 A가 일어나는 어떤 규칙성이 존재한다는 가정 하에 접근하는 것이 바람직합니다. (사실 이러한 가정은 모든 수학적인 법칙의 대전제와도 같으며, 고교 과정에서는 특히 수열 단원에서 그 원리를 자주 접하게 됩니다.)
그렇다면 사건 A가 일어나는 경우부터 조사해 봅시다.
이때, 사건 A는 각 카드에 붙어 있는 스티커의 개수가 아니라 그것을 3으로 나눈 나머지에 따라 결정되므로 카드에 붙어 있는 스티커의 개수는 사건 A의 결정요소인 나머지만으로 표현하겠습니다.
즉, 카드0 은 카드에 붙어 있는 스티커의 개수를 3으로 나눈 나머지가 0이고, 카드1 은 카드에 붙어 있는 스티커의 개수를 3으로 나눈 나머지가 1임을 뜻합니다.
사건 A가 일어나는 경우는 아래와 같이 시행 후에 모두 카드1이 되거나 모두 카드2 또는 모두 카드0이 되는 세 가지밖에 없습니다.
그런데 보이는 바와 같이 처음 (카드1,카드2,카드0)의 상태에서 사건 A가 일어나기 위해서는 반드시 3장의 카드가 필요합니다.(규칙성을 찾았습니다!!)
따라서 1회와 2회의 시행에서는 절대 사건 A가 일어날 수 없으며, 3회의 시행 후 사건 A가 일어날 확률은 세 문자 +1, +1, +1 중 두 개를 세 카드 중 하나에 배열하는 방법의 수와 같습니다. (계산 과정은 생략)
∴ P(A)=1/3
그러므로 3회의 시행에서 사건 A가 일어나지 않을 확률은
P(A^C)=2/3
이때, 3회의 시행 후 사건 A가 일어나지 않는 경우는 아래와 같이 3개의 스티커를 모두 다른 카드에 붙이거나 모두 같은 카드에 붙이는 두 가지밖에 없습니다.
따라서 3회의 시행에서 사건 A가 일어나지 않으면, 세 장의 카드는 3으로 나눈 나머지가 다시 처음 (카드1,카드2,카드0)의 상태와 같아집니다.
결국, 5회까지 사건 A가 일어나지 않고, 6회에서 사건 A가 일어날 확률은 3회까지 사건 A가 일어나지 않고 그 이후의 3회에서 사건 A가 일어날 확률과 같습니다.
∴ P=P(A)×P(A^C)=(2/3)×(1/3)=2/9
결론적으로 문제에서 묻고 있는 시행은 확률이 일정한 독립시행이었던 것입니다.
(교과 과정에서 여러 번의 시행을 반복했을 때의 확률에 대한 개념이 독립시행의 확률밖에 없음을 알고 있었다면 조금 더 접근하기가 수월했을 것입니다.)
주어진 상황을 그것을 결정하는 요소(변수)로 표현하려는 것은 수열의 일반항을 찾거나 방정식(또는 함수)을 구성할 때 매번 다뤄지는 원리이며(지난칼럼 '개념을 효과적으로 공부하는 방법' 참조), 자연수를 특정한 수로 나눈 나머지에 따라 분류하는 것 역시 짝수와 홀수의 개념을 정확히 이해하고 있다면 전혀 새로울 것이 없는 내용입니다.
(이와 같이 여러 단원의 개념들이 통합되어 풀이의 근거를 혼자의 힘으로 확인하기 어려운 문제에 대해서는 주변의 도움을 적극적으로 이용할 필요가 있습니다.)
기출분석의 관건은 내가 알고 있는 내용만으로 문제가 다 풀린다는 것을 '스스로 확인'하는 것이며, 여기에 대한 확신이 생겼을 때 수능에 대한 두려움은 대부분 사라질 것입니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
학원 알바 하는데 고딩 셋이서 어느 대학 붙었냐는거임 그냥 이대랑 중대 붙었다고...
-
이거 왜 안되는지 설명좀??
-
아니 틀딱 기출 틀리는 ㅂㅅ이 어딨냐고 ㅋㅋㅋ 아 ㅋㅋㅋ 0
그것도 국어 틀딱기출 ㅋㅋㅋㅋ 그게 나네. 쪽팔리니까 진짜 정신 차려야겠다..
-
시대인재북스 d caf 말고 아는 게 없다
-
옆 분 ㄹㅇ 잘 뛰시네 10
12로 25분까지만 따라가고 더 이상 못 뛰겠뇨이 심지어 13 맞춰놓고 뛰심 GG선언
-
딱걸고 ㅇ..여보세요? 이것도 힘든데!
-
슬픈사실)기인쵸비는 원장롤의경험이있다..
-
추가합격받고 인증해야하는데 진짜 복잡한 사정으로 모바일 학생증이 내일에서야...
-
지금 공부가 중요하노???? 바로 유튜브켜서 lck 라이브 스트리밍봐라
-
오느른 5
오랜만에 축구 하는 날
-
초콜릿언제오지 1
당일발송이던데 너무늦지않게왔으면좋겠다 바로냉장고에넣을수있게..
-
기적 만들어보자
-
남들은 당연하게 하던거임.. 그게 문제 등급이 낮을수록 배울건 조ㅗㅗ오오오ㅗㅇ나나 마늠
-
ㅜㅜ
-
2세트 이길세트 였다고 아쉬워하니까 멘탈관리 바로 해주네
-
수능이 존나 고였으니까 그러지 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
난 밥먹을 자격도 없는 쓸애기 같아서 이틀동안 밥도 안 먹었는데 오늘 친구만나서...
-
시발5꽉이네 3
젠지존나못하네 걍 져라 시발
-
일단 난이도는 여전히 쉬운 편은 아녔음. 몇먗 허를 찌르는 문항이 있었고 14번...
-
아니 젠지왜저래 9
왜 5꽉을가... 베테랑서폿의부재+감코진부재인가...
-
수학1 하시면 됩니다
-
ㅇㅈ?
-
어이가 없노 ㅋㅋㅋ
-
머함님들 6
ㄴㅇ
-
상남자식 반영비 7
수학 백분위 = 내 등수
-
평균 6등급인데 ( 생지 ) 인문계 가는 선택지가 없습니다 사탐런했다가 어떻게 될지 몰라서 무섭네요
-
수학 오답노트 0
수학 오답노트 어떻게 쓰는게 가장 효율적일까요? 노트에 문제를 다쓰면 너무...
-
10분정도 고민했는데 안보이면 바로 답지로 넘어가도되나요?
-
퇴근길 행복한 고민
-
원서 실패 2
저보다 점수 더 못받았는데 스나로 잘 간 사람들 볼때마다 원서질 실패라는 생각...
-
국어 영어 1-2등급 왔다갔다 하는 수준에서 한번 더 수능치는거면 지금 뭐해야할까요?? 1
수능은 국어2영어1이긴 한데 6평부터 실모까지 아슬아슬한 순간 연속이었고 뭔가...
-
"비율은 분수다" 이게 "현우진은 수학강사이다" "장원영은 여자아이돌이다"...
-
오늘 직관하는 사람들 진짜 개부럽다 ㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜ
-
경쟁률 빡세지 않나? 상대평가 등급 이런것도 아니고..붙는사람은 뭐임 ㄹㅇ
-
흡연하는여자 우떰 27
추구미는 카즈하임 객관적이든 주관적이든 말해주센 담배마려움
-
고3 인문논술 3
고3이고 6논술 쓸 예정인데 3월부터 준비하면 너무 이른가요? (학원이고 일요일...
-
브링이 사랑해 3
쪽♡
-
쭉쭉쭉쭉쭉
-
오천원주면서 오백개달랫더니 미친놈처럼봄;
-
어터케할카뇨
-
Px를 매일 가는 삶
-
뭔가 수1 수2 확통이랑 다르게 재밌는 기출이 많은 것 같음 사고의 깊이도...
-
수능 꽤 중요하게 준비해온 입장에서 1. 수능 끝나자마자 이별통보받기 vs 2....
-
난 쓰레기야 2
투에니파이브 쳐먹고 잠읗 몬참앗어 난 실패작이야..
-
존나먹싶돈없
-
언미물생 135 131 1 60 62 이거 추가모집 찔러볼만한 곳이라도 있을까요... ㅠㅠㅠ
-
이거 나만 이럼? 답답해죽겄네
-
슬림 패키지 나왔던데 사실 모고 좋다는 거만 알고 다른건 하나도 몰라서
ㅋㅋ 저 문제를 직접 시험장에서 만나본 사람들은 확률문제가 진짜 두려웠었죠... 저때 저문제를 맞춘 친구는 9월 2일이라서 11로 찍었었는데 맞췄는데...
수학자들이 즐겨하는 장난?이긴 하지만... 어쨌든 대단한 직관의 소유자로군요~
9+2=11!!
좋아요
교과과정기본개념.오늘 수비공부하는대많이중요하더군요
죄송한데 2010 나 형 25번도 알려주시면 안되나요??ㅜ 홀 수 번째랑 짝수번째 규칙이 있는건 알겠는데 무엇을 원하는건지 도통 보이지가 않습니다 ㅜ 그냥 노가다로 구하면 답이 나오긴 하는데 ㅜ
그 문제 역시 교과 과정의 기본 개념을 이용하면 가장 효율적이고 정확한 방법으로 접근할 수 있답니다!
힌트를 드리자면 대칭성을 이용하는 것입니다. 그러면 왜 홀수번째와 짝수번째의 차이를 묻고 있는지 명확히 이해할 수 있습니다..
댓글남기고갑니다
잘보고갑니다 ^^
잘보고갑니다 ^^
잘보고갑니다 ^^
좋은글감사드려요!
감사합니다